Skip to main content

Determining a Stable Texture Condition Under Complex Strain Path Deformations in Face Centered Cubic Metals

  • Conference paper
  • First Online:
Light Metals 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 2854 Accesses

Abstract

Evolution of texture components during deformation of lightweight aluminum alloy sheet under different strain paths is studied by analyzing the evolution of element rotation calculated using a rate-dependent crystal plasticity finite element model. Based on a stability criteria proposed by Ali et al. (Light Metals 2016. Wiley, London, pp. 159–162, 2016), data from cold rolling, shear and compression simulations is analyzed to determine stable texture components. The predicted stable texture components, for the same microstructure, for rolling, shear and compression using the stability criteria are in-line with experimental observations. Further analysis of simulated data yields a simpler methodology that stable texture components are those that are aligned with the loading direction. Using this methodology, stable textures under rolling, shear and plane-strain compression are analytically identified and the results show an excellent conformity to experimental data. This new methodology can be included in robust non-texture based phenomenological modelling to predict texture evolution in engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. U. Ali, A. Brahme, R.K. Mishra, K. Inal, Multi-scale numerical modeling of rolling using a crystal plasticity based element free galerkin model, in SPD 06 (Metz, France, 2014)

    Google Scholar 

  2. U. Ali, A.P. Brahme, R.K. Mishra, K. Inal, New methodology to determine stable texture components under cold rolling in FCC metals, in Light Metals 2016 (Wiley, London, 2016), pp. 159–162

    Google Scholar 

  3. R.J. Asaro, A. Needleman, Texture development and strain hardening in rate dependent polyrystals. Acta Metall 33, 923–953 (1985)

    Article  Google Scholar 

  4. A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, A.D. Rollett, 3D reconstruction of microstructure in a commercial purity aluminum. Scr. Mater. 55, 75–80 (2006)

    Article  Google Scholar 

  5. J. Cho, A.D. Rollett, K.H. Oh, Determination of a mean orientation in electron backscatter diffraction measurements of average orientations. Metall. Mater. Trans. A 36, 3427–3438 (2005)

    Article  Google Scholar 

  6. C.-H. Choi, J.-W. Kwon, K.H. Oh, D.N. Lee, Analysis of deformation texture in homogeneity and stability condition of shear components in F.C.C metals. Acta Metall. 45, 5119–5128 (1997)

    Google Scholar 

  7. E.D. Cyr, M. Mohammadi, R.K. Mishra, K. Inal, A three dimensional (3D) thermo-elasto-viscoplastic constitutive model for FCC polycrystals. Int. J. Plast 70, 166–190 (2015)

    Article  Google Scholar 

  8. L. Delannay, O.V. Mishin, Crystal plasticity modeling of the through-thickness texture heterogeneity in heavily rolled aluminum. Key Eng. Mater. 554–557, 1189–1194 (2013). doi:10.4028/www.scientific.net/KEM.554-557.1189

  9. O. Engler, M. Crumback, S. Li, Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model. Acta Mater. 53, 2241–2257 (2005). doi:10.1016/j.actamat.2005.01.032

    Article  Google Scholar 

  10. D. Ghaffari Tari, M.J. Worswick, U. Ali, M.A. Gharghouri, Mechanical response of AZ31B magnesium alloy: experimental characterization and material modeling considering proportional loading at room temperature. Int. J. Plast 55, 247–267 (2014). doi:10.1016/j.ijplas.2013.10.006

    Article  Google Scholar 

  11. J. Hirsch, K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metall. 36, 2863–2882 (1988)

    Article  Google Scholar 

  12. J. Hirsch, K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 36, 2883–2904 (1988)

    Article  Google Scholar 

  13. J. Hirsch, K. Lücke, M. Hatherly, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—III. The influence of slip inhomogeneities and twinning. Acta Metall. 36, 2905–2927 (1988)

    Article  Google Scholar 

  14. M. Hölscher, D. Raabe, K. Lücke, Relationship between rolling textures and shear textures in f.c.c. and b.c.c. metals. Acta Metall. Mater. 42, 879–886 (1994). doi:10.1016/0956-7151(94)90283-6

    Article  Google Scholar 

  15. P. Van Houtte, A.K. Kanjarlaa, A. Van Baela, M. Seefeldta, L. Delannay, Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. Eur. J. Mech. A/Solids 25, 634–648 (2006)

    Article  Google Scholar 

  16. G. Hu, P. Wriggers, On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Comput. Methods Appl. Mech. Eng. 191, 1333–1348 (2002). doi:10.1016/S0045-7825(01)00326-7

    Article  Google Scholar 

  17. K. Inal, K.W. Neale, A. Aboutajeddine, Forming limit comparisons for FCC and BCC sheets. Int. J. Plast 21, 1255–1266 (2005). doi:10.1016/j.ijplas.2004.08.001

    Article  Google Scholar 

  18. K. Inal, P.D. Wu, K.W. Neale, Large strain behaviour of aluminium sheets subjected to in-plane simple shear. Model. Simul. Mater. Sci. Eng. 10, 237–252 (2002)

    Article  Google Scholar 

  19. H. Jin, D.J. Lloyd, The different effects of asymmetric rolling and surface friction on formation of shear texture in aluminium alloy AA5754. Mater. Sci. Technol. 26, 754–760 (2010). doi:10.1179/174328409X405634

    Article  Google Scholar 

  20. M. Knezevic, B. Drach, M. Ardeljan, I.J. Beyerlein, Three dimensional predictions of grain scale plasticity and grain boundaries using crystal plasticity finite element models. Comput. Methods Appl. Mech. Eng. (2014). doi:10.1016/j.cma.2014.05.003

  21. M. Knezevic, S.R. Kalidindi, D. Fullwood, Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals. Int. J. Plast 24, 1264–1276 (2008). doi:10.1016/j.ijplas.2007.12.002

    Article  Google Scholar 

  22. U. Kocks, C. Tome, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  23. H.R. Le, M.P.F. Sutcliffe, Analysis of surface roughness of cold-rolled aluminium foil. Wear 244, 71–78 (2000)

    Article  Google Scholar 

  24. R.A. Lebensohn, C.N. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater. Sci. Eng. A 175, 71–82 (1994)

    Article  Google Scholar 

  25. J. Lévesque, K. Inal, K.W. Neale, R.K. Mishra, Numerical modeling of formability of extruded magnesium alloy tubes. Int. J. Plast 26, 65–83 (2010). doi:10.1016/j.ijplas.2009.05.001

    Article  Google Scholar 

  26. S. Li, S.R. Kalidindi, I.J. Beyerlein, A crystal plasticity finite element analysis of texture evolution in equal channel angular extrusion. Mater. Sci. Eng. A 410, 207–212 (2005)

    Article  Google Scholar 

  27. LSTC, LS-DYNA Theory Manual, Version 970 (Livermore, CA, 2003)

    Google Scholar 

  28. W. Mao, Z. Sun, Inhomogeneity of rolling texture in Fe-28Al-2Cr alloy. Scr. Metall. 29, 217–220 (1993)

    Article  Google Scholar 

  29. W. Muhammad, M. Mohammadi, J. Kang, R.K. Mishra, K. Inal, An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths. Int. J. Plast 70, 30–59 (2015)

    Article  Google Scholar 

  30. K.W. Neale, K. Inal, P.D. Wu, Effects of texture gradients and strain paths on localization phenomena in polycrystals. Int. J. Mech. Sci. 45, 1671–1686 (2003). doi:10.1016/j.ijmecsci.2003.12.002

    Article  Google Scholar 

  31. J.C. Neil, S.R. Agnew, Crystal plasticity-based forming limit prediction for non-cubic metals: application to Mg alloy AZ31B. Int. J. Plast 25, 379–398 (2009)

    Article  Google Scholar 

  32. E. Popova, Y. Staraselski, A. Brahme, R.K. Mishra, K. Inal, Coupled crystal plasticity—probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys. Int. J. Plast 66, 85–102 (2015). doi:10.1016/j.ijplas.2014.04.008

    Article  Google Scholar 

  33. D. Raabe, R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for si. Model. Simul. Mater. Sci. Eng. 445, 445–462 (2000)

    Article  Google Scholar 

  34. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539–1560 (2003). doi:10.1016/S1359-6454(02)00557-8

    Article  Google Scholar 

  35. J. Rossiter, A. Brahme, K. Inal, R.K. Mishra, Numerical analyses of surface roughness during bending of FCC single crystals and polycrystals. Int. J. Plast 46, 82–93 (2013). doi:10.1016/j.ijplas.2013.01.016

    Article  Google Scholar 

  36. J. Rossiter, A. Brahme, M.H. Simha, K. Inal, R.K. Mishra, A new crystal plasticity scheme for explicit time integration codes to simulate deformation in 3D microstructures: effects of strain path, strain rate and thermal softening on localized deformation in the aluminum alloy 5754 during simple shear. Int. J. Plast 26, 1702–1725 (2010). doi:10.1016/j.ijplas.2010.02.007

    Article  Google Scholar 

  37. P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plast 21, 589–624 (2005)

    Article  Google Scholar 

  38. Y. Zhou, L.S. Tóth, K.W. Neale, On the stability of the ideal orientations of rolling textures for f.c.c. polycrystals. Acta Mater. 40, 3179–3193 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council Automotive Partnership Collaboration (NSERC-APC) Program under grant no. APCPJ 441668-12 and General Motors of Canada. The authors would also like to acknowledge the support of the High Performance Computing Center at the University of Sherbrooke and insightful discussions with Waqas Muhammad and Jaspreet Singh Nagra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Inal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Ali, U., Brahme, A., Mishra, R.K., Inal, K. (2017). Determining a Stable Texture Condition Under Complex Strain Path Deformations in Face Centered Cubic Metals. In: Ratvik, A. (eds) Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51541-0_51

Download citation

Publish with us

Policies and ethics