Skip to main content

High-Power Propulsion Strategies for Aquatic Take-off in Robotics

Part of the Springer Proceedings in Advanced Robotics book series (SPAR,volume 2)

Abstract

The ability to move between air and water with miniature robots would allow distributed water sampling and monitoring of a variety of unstructured marine environments, such as coral reefs and coastal areas. To enable such applications, we are developing a new class of aerial-aquatic robots, called Aquatic Micro Aerial Vehicles (AquaMAVs), capable of diving into the water and returning to flight. One of the main challenges in the development of an AquaMAV is the provision of sufficient power density for take-off from the water. In this paper, we present a novel system for powerful, repeatable aquatic escape using acetylene explosions in a 34 g water jet thruster, which expels water collected from its environment as propellant. We overcome the miniaturisation problems of combustible fuel control and storage by generating acetylene gas from solid calcium carbide, which is reacted with enviromental water. The produced gas is then combusted in air in a valveless combustion chamber to produce over 20 N of thrust, sufficient to propel small robots into the air from water. The system for producing combustible gases from solid fuels is a very compact means of gas storage, and can be applied to other forms of pneumatic actuation and inflatable structure deployment.

R. Siddall and G. Kennedy contributed equally to this work.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-51532-8_1
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-51532-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

(adapted from [16])

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Borchsenius, J., Pinder, S.: Underwater glider propulsion using chemical hydrides. In: OCEANS 2010 IEEE-Sydney, IEEE, pp. 1–8 (2010)

    Google Scholar 

  2. Churaman, W., Currano, L.J., Morris, C.J., Rajkowski, J.E., Bergbreiter, S., et al.: The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. J. Microelectromech. Syst. 21(1), 198–205 (2012)

    CrossRef  Google Scholar 

  3. Desbiens, A.L., Pope, M.T., Christensen, D.L., Hawkes, E.W., Cutkosky, M.R.: Design principles for efficient, repeated jumpgliding. Bioinspir. Biomim. 9(2), 025009 (2014)

    CrossRef  Google Scholar 

  4. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    CrossRef  Google Scholar 

  5. Izraelevitz, J., Triantafyllou, M.: A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor. arXiv preprint arXiv:1412.3843 (2014)

  6. Jones, K., Boria, F., Bachmann, R., Vaidyanathan, R., Ifju, P., Quinn, R.: Mmalv - the morphing micro air-land vehicle. In: IROS 2006 (2006)

    Google Scholar 

  7. Liang, J., Yang, X., Wang, T., Yao, G., Zhao, W.: Design and experiment of a bionic gannet for plunge-diving. J. Bionic Eng. 10(3), 282–291 (2013)

    CrossRef  Google Scholar 

  8. Lock, R.J., Burgess, S.C., Vaidyanathan, R.: Multi-modal locomotion: from animal to application. Bioinspir. Biomim. 9(1), 011001 (2014)

    CrossRef  Google Scholar 

  9. Lock, R.J., Vaidyanathan, R., Burgess, S.C.: Impact of marine locomotion constraints on a bio-inspired aerial-aquatic wing: experimental performance verification. J. Mech. Robot. 6(1), 011001 (2014)

    CrossRef  Google Scholar 

  10. Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping roly-poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015)

    CrossRef  Google Scholar 

  11. McAllister, S., Chen, J., Fernandez-Pello, A.: Fundamentals of Combustion Processes. Mechanical Engineering Series. Springer, Berlin (2011)

    CrossRef  MATH  Google Scholar 

  12. Meadows, G., Atkins, E., Washabaugh, P., Meadows, L., Bernal, L., Gilchrist, B., Smith, D., Van Sumeren, H., Macy, D., Eubank, R., et al.: The flying fish persistent ocean surveillance platform. In AIAA Unmanned Unlimited Conference (2009)

    Google Scholar 

  13. Newhouse, H., Payne, P.: Underwater power source study. Technical report, DTIC Document (1981)

    Google Scholar 

  14. Ore, J.-P., Elbaum, S., Burgin, A., Zhao, B., Detweiler, C.: Autonomous aerial water sampling. In: The 9th International Conference on Field and Service Robots (FSR) (2013)

    Google Scholar 

  15. Schwarzbach, M., Laiacker, M., Mulero-Pazmany, M., Kondak, K.: Remote water sampling using flying robots. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, pp. 72–76 (2014)

    Google Scholar 

  16. Siddall, R., Kovač, M.: Launching the aquamav: bioinspired design for aerial-aquatic robotic platforms. Bioinspir. Biomim. 9(3), 031001 (2014)

    CrossRef  Google Scholar 

  17. Siddall, R., Kovač, M.: Fast aquatic escape with a jet thruster. IEEE/ASME Trans. Mechatron. (2016)

    Google Scholar 

  18. Siddall, R., Kovač, M.: A water jet thruster for an aquatic micro air vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE (2015)

    Google Scholar 

  19. Silvestrini, M., Genova, B., Parisi, G., Leon Trujillo, F.J.: Flame acceleration and ddt run-up distance for smooth and obstacles filled tubes. J. Loss Prev. Process Ind. 21(5), 555–562 (2008)

    CrossRef  Google Scholar 

  20. Tolley, M., Shepherd, R.F., Karpelson, M., Bartlett, N.W., Galloway, K.C., Wehner, M., Nunes, R., Whitesides, G.M., Wood, R.J.: An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE, pp. 561–566 (2014)

    Google Scholar 

  21. Vidyasagar, A., Zufferey, J.-C., Floreano, D., Kovač, M.: Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. (2015)

    Google Scholar 

  22. Weiss, P.: Hop hop hopbots!: designers of small, mobile robots take cues from grasshoppers and frogs. Sci. News 159(6), 88–91 (2001)

    CrossRef  Google Scholar 

  23. Woodward, M.A., Sitti, M.: Multimo-bat: a biologically inspired integrated jumping gliding robot. Int. J. Robot. Res. (2014)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the UK Engineering and Physical Sciences Research Council and an Imperial College London Faculty of Engineering Undergraduate Research Opportunities Programme (UROP) Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Siddall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Siddall, R., Kennedy, G., Kovac, M. (2018). High-Power Propulsion Strategies for Aquatic Take-off in Robotics. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)