Kinematic 3-D Retro-Modeling of an Orogenic Bend in the South Limón Fold-and-Thrust Belt, Eastern Costa Rica: Prediction of the Incremental Internal Strain Distribution

  • Christian BrandesEmail author
  • David C. Tanner
  • Jutta Winsemann
Part of the Pageoph Topical Volumes book series (PTV)


The South Limón fold-and-thrust belt, in the back-arc area of southern Costa Rica, is characterized by a 90° curvature of the strike of the thrust planes and is therefore a natural laboratory for the analysis of curved orogens. The analysis of curved fold-and-thrust belts is a challenge because of the varying structural orientations within the belt. Based on seismic reflection lines, we created a 3-D subsurface model containing three major thrust faults and three stratigraphic horizons. 3-D kinematic retro-deformation modeling was carried out to analyze the spatial evolution of the fold-and-thrust belt. The maximum amount of displacement on each of the faults is (from hinterland to foreland); thrust 1: 800 m; thrust 2: 600 m; thrust 3: 250 m. The model was restored sequentially to its pre-deformational state. The strain history of the stratigraphic horizons in the model was calculated at every step. This shows that the internal strain pattern has an abrupt change at the orogenic bend. Contractional strain occurs in the forelimbs of the hanging-wall anticlines, while a zone of dilative strain spreads from the anticline crests to the backlimbs. The modeling shows that a NNE-directed transport direction best explains the structural evolution of the bend. This would require a left-lateral strike-slip zone in the North to compensate for the movement and thereby decoupling the South Limón fold-and-thrust belt from northern Costa Rica. Therefore, our modeling supports the presence of the Trans-Isthmic fault system, at least during the Plio-Pleistocene.


Fold-and-thrust belt kinematic modeling active margin Central America Costa Rica Cocos Ridge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abratis, M., and Wörner, G. (2001), Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm, Geology 29, 127–130. doi: 10.1130/0091-7613(2001)029<0127:RCSWFA>2.0.CO;2.CrossRefGoogle Scholar
  2. Affolter, T., and Gratier, J.-P. (2004), Map view retrodeformation of an arcuate fold-and thrust belt: The Jura case, Journal of Geophysical Research 108, B03404. doi: 10.1029/2002JB002270.
  3. Amann, H. (1993), Randmarine und terrestrische Ablagerungsräume des neogenen Inselbogensystems in Costa Rica (Mittelamerika), Profil 4, 161 pp.Google Scholar
  4. Argand, E. (1924), La tectonique de l’Asie, 13th International Geological Congress Conf. Proceedings, Brussels, pp. 171.Google Scholar
  5. Astorga, A., Fernandez, J.A., Barboza, G., Campos, L., Obando, J., Aguilar, A., and Obando, L.G. (1991), Cuencas sedimentarias de Costa Rica: evolucion geodinamica y potencial de hidrocarburos, Revista Geologica de América Central 13, 25–59.Google Scholar
  6. Barboza, G., Fernández, A., Barrientos, J., and Bottazzi, G. (1997), Costa Rica: Petroleum geology of the Caribbean margin, Leading Edge 16, 1787–1794.CrossRefGoogle Scholar
  7. Barckhausen, U., Ranero, C.R., von Huene, R., Cande, S.C., and Roeser, H.A. (2003), Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models, Journal of Geophysical Research 106, 19207–19220. doi: 10.1029/2001JB000238.CrossRefGoogle Scholar
  8. Bottazzi, G., Fernandez, A. and Barboza, G. (1994), Sedimentología e historiatectono-sedimentaria de la cuenca Limón Sur. In Seyfried H. & Hellmann W. (eds.) Geology of an Evolving Island Arc, The Isthmus of Southern Nicaragua, Costa Rica and Western Panamá, Profil 7, pp. 351–389.Google Scholar
  9. Bowland, C.L. (1993), Depositional history of the western Colombian Basin, Caribbean Sea, revealed by seismic stratigraphy. GSA Bulletin 105, 1321–1345. doi: 10.1130/0016-7606(1993)105<1321:DHOTWC>2.3.CO;2.CrossRefGoogle Scholar
  10. Brandes, C., and Tanner, D.C. (2014), Fault-related folding: a review of kinematic models and their application, Earth Science Reviews 138, 352–370. doi: 10.1016/j.earscirev.2014.06.008.CrossRefGoogle Scholar
  11. Brandes, C., Astorga, A., and Winsemann, J. (2009), The Moín High, East Costa Rica: Seamount, laccolith or contractional structure? Journal of South American Earth Sciences 28, 1–13. doi: 10.1016/j.jsames.2009.02.005.CrossRefGoogle Scholar
  12. Brandes, C., Astorga, A., Littke, R., and Winsemann, J. (2008), Basin modelling of the Limón Back-arc Basin (Costa Rica): burial history and temperature evolution of an island-arc related basin system, Basin Research 20, 119–142. doi: 10.1111/j.1365-2117.2007.00345.x.CrossRefGoogle Scholar
  13. Brandes, C., Astorga, A., Back, S., Littke, R., and Winsemann, J. (2007), Fault controls on sediment distribution patterns, Limón Basin, Costa Rica, Journal of Petroleum Geology 30, 25–40. doi: 10.1111/j.1747-5457.2007.00025.x.CrossRefGoogle Scholar
  14. Brandes, C., Astorga, A., Back, S., Littke, R., and Winsemann, J. (2007), Deformation style and basin-fill architecture of the offshore Limón Back-arc basin, Marine and Petroleum Geology 24, 277–287. doi: 10.1016/j.marpetgeo.2007.03.002.CrossRefGoogle Scholar
  15. Brandes, C., Astorga, A., Blisniuk, P., Littke, R., and Winsemann, J. (2007), Anatomy of anticlines, piggy-back basins and growth strata: a case study from the Limón Fold-and-thrust belt, Costa Rica. In: Nichols, G., Williams, E., and Paola, C. (eds) Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend, IAS Special Publication 38, pp. 91–110, Blackwell Science, Oxford. doi: 10.1002/9781444304411.ch5.
  16. Butler, R.W.H., Prior, D.J., and Knipe, R.J. (1989), Neotectonics of the Nanga Parbat Syntaxis, Pakistan, and crustal stacking in the northwest Himalayas, Earth and Planetary Science Letters 94, 329–343. doi: 10.1016/0012-821X(89)90150-7.CrossRefGoogle Scholar
  17. Campos L. (2001), Geology and basins history of middle Costa Rica: an intraoceanic island arc in the convergence between the Caribbean and the central pacific plates, Tübinger Geowissenschaftliche Arbeiten, Reihe A 62, 138 pp.Google Scholar
  18. Carey, S.W. (1958), A tectonic approach to continental drift. In: Carey, S.W. (ed) Continental Dift: A symposium, Tasmania, Hobart, pp. 177–355.Google Scholar
  19. Carey, S.W. (1955), The orocline concept in geotectonics, Proceedings Royal Society Tasmania 89, 255–288.Google Scholar
  20. Coates, A.G., Aubry, M-P., Berggren, W.A., Collins, L.S. and Kunk, M. (2003), Early Neogene history of the Central American arc from Bocas del Toro, western Panama. GSA Bulletin 115, 271–287.CrossRefGoogle Scholar
  21. Coates, A.G., Jackson, J.B.C., Collins, L.S., Cronin T.M., Dowsett, H.J., Bybell, L.M., Jung, P. and Obando, J.A. (1992), Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. GSA Bulletin 104, 814–828.CrossRefGoogle Scholar
  22. Cooper, M.A., and Trayner, P.M. (1986), Thrust-surface geometry: Implications for thrust-belt evolution and section-balancing techniques, Journal of Structural Geology 8, 305–312. doi: 10.1016/0191-8141(86)90051-9.CrossRefGoogle Scholar
  23. Collins, L.S., Coates, A.G., Jackson, J.B.C., and Obando, J.A. (1995), Timing and rates of emergence of the Limón and Bocas del Toro basins: Caribbean effects of Cocos Ridge subduction? In: Mann, P. (ed) Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Geological Society of America Special Paper 295, pp. 263–289. doi: 10.1130/SPE295-p263.Google Scholar
  24. Corrigan, J., Mann, P., and Ingle, Jr, J.C. (1990), Forearc response to subduction of the Cocos Ridge, Panama-Costa Rica, GSA Bulletin 102, 628–652. doi: 10.1130/SPE295-p263.Google Scholar
  25. Dahlstrom, C.D.A. (1969), Balanced cross sections, Canadian Journal of Earth Sciences 6, 743–757. doi: 10.1139/e69-069.CrossRefGoogle Scholar
  26. Dahlstrom, C.D.A. (1990), Geometric constraints derived from the law of conservation of volume and applied to evolutionary models for detachment folding, AAPG Bulletin 74, 336–344.Google Scholar
  27. Dalziel, I.W.D. and Elliot, D.H. (1973), The Scotia Arc and Antarctic margin. In: Nairn, A.E.M., and Stehli, F.G. (eds) The Ocean Basins and Margins, vol. 1: The South Atlantic. New York, Plenum Press, 171–245. doi: 10.1007/978-1-4684-3030-1_5.CrossRefGoogle Scholar
  28. DeMets, C. (2001), A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc, Geophysical Research Letters 28, 4043–4046. doi: 10.1029/2001GL013518.CrossRefGoogle Scholar
  29. DePaor, D.G. (1988), Balanced section in thrust belts part 1: construction, AAPG Bulletin 72, 73–90. doi: 10.1306/703C81CD-1707-11D7-8645000102C1865D.
  30. Donnelly, T.W. (1989), Geologic history of the Caribbean and Central America, In: Bally, A.W. and Palmer A.R. (eds) The Geology of North America—An overview, Geological Society of America Special Paper A, pp. 299–321.Google Scholar
  31. Fan, G., Beck, S.L., and Wallace, T.C. (1993), The seismic source parameters of the 1991 Costa Rica aftershock sequence: evidence for a transcurrent plate boundary, Journal of Geophysical Research 98 (B9), 15759–15778. doi: 10.1029/93JB01557.CrossRefGoogle Scholar
  32. Farris, D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D., and Valencia, V. (2011), Fracturing of the Panamanian Isthmus during initial collision with South America, Geology 39, 1007–1010. doi: 10.1130/G32237.1.CrossRefGoogle Scholar
  33. Ferrill, D.A., and Groshong, R.H. (1993), Kinematic model for the curvature of the northern Subalpine Chain, France, Journal of Structural Geology 15, 523–541. doi: 10.1016/0191-8141(93)90146-2.CrossRefGoogle Scholar
  34. Fernandez Arce, M. (1996), Evaluacion del hipotetico sistema de falla transcurrente este-oeste de Costa Rica, Rev. Geol. Amér. Central. 19/20, 57–74. doi: 10.15517/rgac.v0i19-20.8626.
  35. Fernandez, J., Alvaro, A., Guillermo, B., Bottazzi, G., Campos, L., Obando, J., Tejera, R., Arrieta, L., Barrientos, J., Bustos, I., Escalante, G., Pizarro, D., Valerín, E., Astorga, A., Bolanos, X., Calvo, C., Laurito, C., Rojas, J., and Valerio, A. (1997), Mapa Geológico de Costa Rica, Ministerio del Ambiente y Energía, Costa Rica.Google Scholar
  36. Fernandez, J.A., Bottazzi, G., Barboza, G. and Astorga A. (1994), Tectónica y estratigrafia de la Cuenca Limón Sur. Rev Revista Geologica de América Central, Vol. Terremoto de Limón, 15–28.Google Scholar
  37. Fisher, D.M., Gardner, T.W., Sak, P.B., Sanchez, J.D., Murphy, K., and Vannucchi, P. (2004), Active thrusting in the inner forearc of an erosive convergent margin, Pacific coast, Costa Rica, Tectonics 23, TC2007, doi: 10.1029/2002TC001464.CrossRefGoogle Scholar
  38. Fischer, M.P. and Wilkerson, M.S. (2000), Predicting the orientation of joints from fold shape: results of pseudo-three-dimensional modeling and curvature analysis, Geology 28, 15–18. doi: 10.1130/0091-7613(2000)28<15:PTOOJF>2.0.CO;2.CrossRefGoogle Scholar
  39. Gardner, T.W., Fisher, D.M., Morell, K.D., and Cupper, M.L. (2013), Upper-plate deformation in response to flat slab subduction inboard of the aseismic Cocos Ridge, Osa Peninsula, Costa Rica, Lithosphere 5, 247–264. doi: 10.1130/L251.1.CrossRefGoogle Scholar
  40. Gates, A.E., Valentino, D.W., Chiarenzelli, J.R., Solar, G.S., and Hamilton, M.A. (2004), Exhumed Himalayan-type syntaxis in the Grenville orogen, northeastern Laurentia, Journal of Geodynamics 37, 337–359. doi: 10.1016/j.jog.2004.02.011.CrossRefGoogle Scholar
  41. Goes S.D.B., Velasco A.A., Schwartz S.Y., and Lay T. (1993), The April 22, 1991, Valle de la Estrella, Costa Rica (Mw = 7.7) earthquake and its tectonic implications: a broadband seismic study, Journal of Geophysical Research 98, B5, 8127–8142. doi: 10.1029/93JB00019.CrossRefGoogle Scholar
  42. Gray, M.B., and Stamatakos, J. (1997), New model for evolution of fold and thrust belt curvature based on integrated structural and paleomagnetic results from the Pennsylvania salient, Geology 25, 1067–1070. doi: 10.1130/0091-7613(1997)025<1067:NMFEOF>2.3.CO;2.CrossRefGoogle Scholar
  43. Greb, L., Saric, B., Seyfried, H., Broszonn, T., Brauch, S., Gugau, G., Wiltschko, C., and Leinfelder, R. (1996), Ökologie und Sedimentologie eines rezenten Rampen-systems an der Karibikküste von Panamá, Profil 10, 1–168.Google Scholar
  44. Gutiérrez-Alonso, G., Johnston, S.T., Weil, A.B., Pastor-Galán, D., and Fernández-Suárez, J. (2012), Buckling an orogen: The Cantabrian Orocline, GSA Today 22, 4–8. doi: 10.1130/GSATG141A.1.
  45. Hindle, D., and Burkhard, M. (1999), Strain displacement and rotation associated with the formation of curvature in fold belts; the example of the Jura arc, Journal of Structural Geology 21, 1089–1101. doi: 10.1016/S0191-8141(99)00021-8.CrossRefGoogle Scholar
  46. Krawinkel, H., Seyfried, H., Calvo, C. and Astorga, A. (2000), Origin and inversion of sedimentary basins in southern Central America. Zeitschrift für Angewandte Geologie SH 1, 71–77.Google Scholar
  47. Krawinkel, J., and Seyfried, H. (1994), A review of plate-tectonic processes involved in the formation of the southwestern edge of the Caribbean Plate, In: Seyfried, H., and Hellmann, W. (eds) Geology of an Evolving Island Arc, The Isthmus of Southern Nicaragua, Costa Rica and Western Panamá, Profil 7, 47–61.Google Scholar
  48. Lisle, R. (1994), Detection of abnormal strains in structures using Gaussian curvature analysis, American Association of Petroleum Geologists Bulletin 78, 1811–1819.Google Scholar
  49. Lisle, R. (1999), Predicting patterns of strain from three-dimensional fold geometries: neutral surface folds and forced folds, Geological Society London, Special Publications 169(1), 213–221. doi: 10.1144/GSL.SP.2000.169.01.16.CrossRefGoogle Scholar
  50. Lonsdale, P., and Klitgord, K. (1978), Structure and tectonic history of the eastern Panama Basin, GSA Bulletin 89, 981–999.CrossRefGoogle Scholar
  51. Lohr, T., Krawczyk, C.M., Oncken, O., Tanner, D.C., Samiee, R., Endres, H., Thierer, P., Trappe, H., Bachmann, R., and Kukla, P.A. (2008), Prediction of subseismic faults and fractures: Integration of three-dimensional seismic data, three-dimensional retro-deformation, and well data on an example of deformation around an inverted fault, AAPG Bulletin 92/4, 473–485. doi: 10.1306/11260707046.CrossRefGoogle Scholar
  52. Macedo, J., and Marshak, S. (1999), Controls on the geometry of fold-and-thrust belt salient, GSA Bulletin 111, 1808–1822. doi: 10.1130/0016-7606(1999)111<1808:COTGOF>2.3.CO;2.CrossRefGoogle Scholar
  53. MacMillan I., Gans P.B., and Alvarado G. (2004), Middle Miocene to present tectonic history of the southern Central American Volcanic Arc, Tectonophysics 392, 325–348. doi: 10.1016/j.tecto.2004.04.014.CrossRefGoogle Scholar
  54. Marshak, S. (2004), Salients, recesses, arcs, oroclines, and syntaxes – a review of ideas concerning the formation of map-view curves in fold-thrust belts. In: McClay, K.R. (ed) Thrust Tectonics and Hydrocarbon Systems, American Association of Petroleum Geologists, Memoir 82, pp. 131–156.Google Scholar
  55. Marshall, J.S., Fisher, D.M., and Gardner T.W. (2000), Central Costa Rica deformed belt: kinematics of diffuse faulting across the western Panama block, Tectonics 19, 468–492. doi: 10.1029/1999TC001136.CrossRefGoogle Scholar
  56. McNeill, D.F., Coates, A.G., Budd, A.F. and Borne, P.F. (2000), Integrated paleontologic and paleomagnetic stratigraphy of the Upper Neogene deposits around Limon, Costa Rica: A coastal emergence record of the Central American Isthmus. GSA Bulletin 112, 963–981.Google Scholar
  57. Mende A. (2001), Sedimente und Architektur der Forearc- und Backarc-Becken von Südost-Costa Rica und Nordwest-Panamá, Profil 19, 130 pp.Google Scholar
  58. Meschede, M., and Frisch, W. (1998), A plate tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean Plate, Tectonophysics 296, 269–291. doi: 10.1016/S0040-1951(98)00157-7.CrossRefGoogle Scholar
  59. Montes, C., Bayona, G., Cardona, A., Buchs, D.M., Silva, C.A., Morón, S., Hoyos, N., Ramírez, D.A., Jaramillo, C.A., and Valencia, V. (2012), Arc-continent collision and orocline formation: Closing of the Central American seaway, Journal of Geophysical Research 117, B04105. doi: 10.1029/2011JB008959.CrossRefGoogle Scholar
  60. Morell, K.D. (2016), Seamount, ridge and transform subduction in southern Central America. Tectonics 35,  10.1002/2015TC003950.CrossRefGoogle Scholar
  61. Morell, K.D., Gardner, T.W., Fisher, D.M., Idleman, B., and Zellner, H. (2013), Active thrusting, landscape evolution and late Pleistocene sector collapse of Barú Volcano above the Cocos-Nazca slab tear, southern Central America, GSA Bulletin 125, 1301–1318. doi: 10.1130/B30771.1.CrossRefGoogle Scholar
  62. Morell, K.D., Kirby, E., Fisher, D., and van Soest, M. (2012), Geomorphic and exhumational response of the Central American volcanic arc to Cocos Ridge subduction, Journal of Geophysical Research 117, B04409, doi: 10.1029/2011JB008969.CrossRefGoogle Scholar
  63. Morell, K.D., Fisher, D.M., and Gardner, T.W. (2008), Inner forearc response to subduction of the Panama fracture zone, southern Central America, Earth and Planetary Science Letters 265, 82–95. doi: 10.1016/j.epsl.2007.09.039.CrossRefGoogle Scholar
  64. Mukul, M., and Mitra, G. (1998), Finite strain and strain variation analysis in the Sheeprock Thrust Sheet: an internal thrust sheet in the Provo salient of the Sevier Fold-and-Thrust belt, Central Utah, Journal of Structural Geology 20, 385–405. doi: 10.1016/S0191-8141(97)00087-4.CrossRefGoogle Scholar
  65. Naif, S., Key, K., Constable, S., and Evans, R.L. (2013), Melt-rich channel observed at the lithosphereasthenosphere boundary, Nature 495, 356–359. doi: 10.1038/nature11939.CrossRefGoogle Scholar
  66. Pindell, J.L., and Kennan, L. (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, In: James, K.H., Lorente, M.A., and Pindell, J.L. (eds) The Origin and Evolution of the Caribbean Plate, Geological Society, London, Special Publications 328, pp. 1–55. doi: 10.1144/SP328.1.Google Scholar
  67. Poblet, J., and Lisle, R.J. (eds), (2011), Kinematic evolution and structural styles of fold- and-thrust belts, Special Publication of the Geological Society of London 349. doi: 10.1144/SP349.4.CrossRefGoogle Scholar
  68. Protti, M., and Schwartz, S.Y. (1994), Mechanics of back arc deformation in Costa Rica: Evidence from an aftershock study of the April 22, 1991, Valle de la Estrella, Costa Rica, earthquake (Mw = 7.7), Tectonics 13, 1093–1107. doi: 10.1029/94TC01319.CrossRefGoogle Scholar
  69. Ranero, C.R., and von Huene, R. (2000), Subduction erosion along the Middle America convergent margin, Nature 404, 748–752. doi: 10.1038/35008046.CrossRefGoogle Scholar
  70. Ross M.I., and Scotese C.R. (1988), A hierachical tectonic model of the Gulf of Mexico and the Caribbean region, Tectonophysics 155, 139–168. doi: 10.1016/0040-1951(88)90263-6.CrossRefGoogle Scholar
  71. Sala, P., Pfiffner, O.A., and Frehner, M. (2014), The Alpstein in three dimensions: fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland, Swiss Journal of Geoscience 107, 177–195. doi: 10.1007/s00015-014-0168-6.CrossRefGoogle Scholar
  72. Seyfried, H., Astorga, A., Amann, H., Calvo, C., Kolb, W., Schmidt, H., and Winsemann, J. (1991), Anatomy of an evolving island arc: tectonic and eustatic control in the south Central American forearc area. In: MacDonald, D.I.M. (ed.) Sedimentation, Tectonics and Eustacy: Sea-level changes at Active Margins, International Association of Sedimentologists, Special Publication 12, pp. 273–292. doi: 10.1002/9781444303896.ch13.
  73. Sheehan, C.A., Penfield, G.T., and Morales E. (1990), Costa Rica geologic basins lure wildcatters. Oil Gas Journal Apr. 30, 74–79.Google Scholar
  74. Silver E.A., Reed D.L., Tagudin J.E., and Heil D.J. (1990), Implications of the north and south Panama thrust belts for the origin of the Panama orocline, Tectonics 9, 261–281. doi: 10.1029/TC009i002p00261.CrossRefGoogle Scholar
  75. Sitchler, J.C., Fisher, D.M., Gardner, T.W., and Protti, M. (2007), Constraints on inner forearc deformation from balanced cross sections, Fila Costena thrust belt, Costa Rica, Tectonics 26, TC6012. doi: 10.1029/2006TC001949.CrossRefGoogle Scholar
  76. Suess, E. (1908), Das Antlitz der Erde. Erster Band, Wien, 778 pp.Google Scholar
  77. Suppe J., and Medwedeff D.A. (1990), Geometry and kinematics of fault-propagation folding, Eclogae Geologicae Helvetiae 83(3), 409–454.Google Scholar
  78. Tanner, D.C., Behrmann, J.H., and Dresmann, H. (2003), Three-dimensional retro-deformation of the Lechtal Nappe, Northern Calcareous Alps, Journal of Structural Geology 25, 737–748. doi: 10.1016/S0191-8141(02)00057-3.CrossRefGoogle Scholar
  79. Tanner, D.C., Bense, F.A., and Ertl, G. (2011), Kinematic retro-modelling of a cross-section through the Western Irish Namurian Basin. In: Poblet, J., and Lisle, R.J. (eds) Kinematic evolution and structural styles of fold- and-thrust belts, Special Publication of the Geological Society of London 349, 61–76. doi: 10.1144/SP349.4.CrossRefGoogle Scholar
  80. van der Pluijm, B.A., and Marshak, S. (2004), Earth Structure. Norton and Company, 656 pp.Google Scholar
  81. von Eynatten, H., Schmidt, H., and Winsemann, J. (1993), Plio-Pleistocene outer arc basins in southern Central America, In: Frostick, L., and Steele, R. (eds) Sedimentation and Tectonics, IAS Special Publication 20, pp. 399–414. doi: 10.1002/9781444304053.ch21.CrossRefGoogle Scholar
  82. Walther, C.H.E. (2003), The crustal structure of the Cocos Ridge of Costa Rica, Journal of Geophysical Research 108, 1–21. doi: 10.1029/2001JB000888.
  83. Wu, S., Yu, Z., Zhang, R., Han, W., and Zou, D. (2005), Mesozoic-Cenozoic tectonic evolution of the Zhuanghai area, Bohai-Bay Basin, east China: the application of balanced cross-sections, Journal of Geophysics and Engineering 2, 158–168. doi: 10.1088/1742-2132/2/2/011.CrossRefGoogle Scholar
  84. Zeumann, S., and Hampel, A. (2015), Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3D finite-element models and application to the Central American, Peruvian and Ryukyu margins, Tectonics 34, 1769–1791. doi: 10.1002/2015TC003867.CrossRefGoogle Scholar
  85. Ziesch, J., Tanner, D.C., and Krawczyk, C.M. (2014), Strain associated with the fault-parallel flow algorithm during kinematic fault displacement, Mathematical Geoscience 46(1), 59–73. doi: 10.1007/s11004-013-9464-3.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Christian Brandes
    • 1
    Email author
  • David C. Tanner
    • 2
  • Jutta Winsemann
    • 1
  1. 1.Institut für GeologieLeibniz Universität HannoverHannoverGermany
  2. 2.Leibniz Institute for Applied Geophysics (LIAG)HannoverGermany

Personalised recommendations