Skip to main content

Transmission Probability of Diffusing Particles—A Case Study

  • Conference paper
  • First Online:
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4430 Accesses

Abstract

A diffusing particle is subjected to a variety of collisions that lead to a random or Brownian motion. The aim of this study is to compute the transmission probability and highlight the visualization of Brownian motion under the conditions of varying viscosity, particle size and temperature. As a preliminary study, two simulation results such as transport of diluted species and particle based approach have been compared and the transmission probability is computed by a particle based approach. We validate our results with Stokes-Einstein equation and Fang and Ning’s experimental and theoretical work and show that the transmission probability increases with decrease in viscosity and particle size and increase in temperature. The obtained results also describe the Brownian motion for various particle sizes, viscosity and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. S.C. Glotzer, M.J. Solomon, N.A. Kotov, AIChE J. 50(12), 2978–2985 (2004)

    Article  Google Scholar 

  2. J. Park, W. Lu, Appl. Phys. Lett. 93(24), 243109 (2008)

    Article  Google Scholar 

  3. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, Amsterdam, 2003), p. 450

    Google Scholar 

  4. A.P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dizon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, M.E. Thompson, Adv. Mater. 10, 1297 (1998)

    Article  Google Scholar 

  5. K.M. Chen, X. Jiang, L.C. Kimerling, P.T. Hammond, Langmuir, 16(2000), 7825–7834

    Google Scholar 

  6. J. Tien, A. Terfort, G.M. Whitesides, Langmuir 13, 5349–5355 (1997)

    Article  Google Scholar 

  7. J. Schmitt, P. Machtle, D. Eck, H. Mohwald, C.A. Helm, Langmuir 15, 3256 (1999)

    Article  Google Scholar 

  8. S. Yeh, M. Seul, B.I. Shraiman, Nature 386, 57–59 (1997)

    Article  Google Scholar 

  9. M. Trau, D.A. Saville, I.A. Aksay, Science 272, 706–709 (1996)

    Article  Google Scholar 

  10. M. Trau, S. Sankaran, D.A. Saville, I.A. Aksay, Nature 374, 437–439 (1995)

    Article  Google Scholar 

  11. R.C. Hayward, D.A. Saville, I.A. Aksay, Nature 404, 56–59 (2000)

    Article  Google Scholar 

  12. H.X. He, H. Zhang, Q.G. Li, T. Zhu, S.F.Y. Li, Z.F. Liu, Langmuir 16, 3846–3851 (2000)

    Article  Google Scholar 

  13. P. Jiang, J.F. Bertone, K.S. Hwang, V.L. Colvin, Chem. Mater. 11, 2132–2140 (1999)

    Article  Google Scholar 

  14. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Divas, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267, 1629–1632 (1995)

    Article  Google Scholar 

  15. T. Sato, D.G. Hasko, H.J. Ahmed, J. Vac. Sci. Technol., B 15, 45 (1997)

    Article  Google Scholar 

  16. H.X. He, W. Huang, H. Zhang, Q.G. Li, F.Y.S. Li, Z.F. Liu, Langmuir 16, 517 (2000)

    Article  Google Scholar 

  17. J. Zhang, Z. Zhu, H. Chen, Z. Liu, Langmuir 16, 4409–4412 (2000)

    Article  Google Scholar 

  18. N. Aubry, P. Singh, M. Janjua and S. Nudurupati, Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 3711–3714; N. Aubry, and P. Singh, Phys. Rev. E, 77 (2008), 056302

    Google Scholar 

  19. D.Y.C. Chan, J.D. Henry Jr., L.R. White, J. Colloid Interface Sci. 79, 410 (1981)

    Article  Google Scholar 

  20. J. Lucassen, Colloids Surf. 65, 131–137 (1992)

    Article  Google Scholar 

  21. M. Janjua, S. Nudurupati, P. Singh, N. Aubry, Electrophoresis 32, 518–526 (2011)

    Article  Google Scholar 

  22. N. Aubry, P. Singh, Phys. Rev. E 77, 056302 (2008)

    Article  Google Scholar 

  23. N. Aubry, P. Singh, M. Janjua, S. Nudurupati, Proc. Natl. Acad. Sci. U.S.A. 105, 3711–3714 (2008)

    Article  Google Scholar 

  24. N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276(5310), 233–235 (1997)

    Article  Google Scholar 

  25. C.D. Dushkin, K. Nagayama, T. Miwa, P.A. Kralchevsky, Langmuir 9, 3695–3701 (1993)

    Article  Google Scholar 

  26. P. Hanggi, F. Marchesoni, Chaos 15(2), 026101 (2005)

    Article  Google Scholar 

  27. E. Frey, K. Kroy, Ann. Phys. 14, 20–50 (2005)

    Article  Google Scholar 

  28. V.I. Tikhonov, M.A. Mironov, Markov Processes (Sov. Radio, Moscow, 1977)

    Google Scholar 

  29. S.A. Akhmanov, Yu.E. D’yakov, A.S. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, Moscow, 1981)

    Google Scholar 

  30. B.V. Gnedenko, in Theory of Probability (Fizmatgiz, Moscow, 1961; Central Books, London, 1970), ed. by V.I. Bogachev, Gaussian Measures (Nauka, Moscow, 1997)

    Google Scholar 

  31. I.I. Gikhman, A.V. Skorokhod, Introduction to the Theory of Random Processes (Nauka, Moscow, 1965; Saunders, Philadelphia, 1969)

    Google Scholar 

  32. R. Elliott, Stochastic Calculus Applications (Springer, Berlin, 1983; Mir, Moscow, 1986)

    Google Scholar 

  33. A.N. Borodin, P. Salminen, Handbook on Brownian Motion (Birkhäuser Verlag, Basel, 1996; Lan’, St.Petersburg, 2000)

    Google Scholar 

  34. S.C. Glotzer, M.J. Solomon, N.A. Kotov, AIChE J. 50, 2985 (2004)

    Article  Google Scholar 

  35. H.Y. Fang, M. Ning, J. Hydrodyn. 26(6), 875–881 (2014)

    Google Scholar 

  36. Brownian Motion, Solved COMSOL Multiphys. 5, 2 (2015)

    Google Scholar 

  37. M. Hossain, K. Shah, D. Ju, S. Gurupatham, I.S. Fischer, P. Singh, ASME 2013 Fluids Engineering Summer Meeting (FEDSM 2013), 7–11 July 2013, Nevada, USA

    Google Scholar 

  38. M. Kim, A.L. Zydney, J. Colloid Interface Sci. 269, 425–431 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Kinnari Shah) acknowledges the financial support, in the form of a Teaching Assistantship, by the Department of Mechanical and Industrial Engineering at the New Jersey Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnari Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Shah, K., Ravindra, N.M. (2017). Transmission Probability of Diffusing Particles—A Case Study. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_72

Download citation

Publish with us

Policies and ethics