Skip to main content

An IPv6 Energy-Harvested WSN Demonstrator Compatible with Indoor Applications

  • Chapter
  • First Online:
Enabling the Internet of Things

Abstract

In this chapter, we present the results of a research project that was developed in ST with key partners over several years. It is an energy-harvested, self-healing, secured IPv6 Wireless Sensor & Actuator Network (WSAN), designed for indoor environments. Pairing and installation have been taken into account to propose a complete system solution. GreenNet has demonstrated that it is possible to achieve autonomy with upcoming radio generations. However, this is possible only if certain cross-layer optimizations are performed throughout the software stack. Details and results are provided along the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Minimum Active Period = 60 Symbols × 16 μs × 16 slots = 15.36 ms

    Maximum Beacon Interval = 214 Symbols × 16 μs × 16 slots = ~4.2 min.

  2. 2.

    DODAG : Destination Object Directed Assisted Graph.

  3. 3.

    A node uses routing tables for forwarding packets to leafs.

  4. 4.

    DAO (Destination Advertisement Object): upward messages sent to create downward routes (see Winter et al. 2012).

  5. 5.

    We did not succeed in implementing RPL and ContikiMAC (Dunkels et al. 2011) within a typical 8 KB RAM low End MCU.

  6. 6.

    During this flooding, each router creates also a reverse path inserting in its routing table the next hop to ER (actually next-hop in upward direction is always the parent).

  7. 7.

    During this phase each router creates also the downward route for the destination of interest.

  8. 8.

    While the upper bound on message length for CCM does exist, for practical purposes in IEEE 802.15.4 WSN it can be considered arbitrarily large.

References

  • M24LR64E-R datasheet: 64-Kbit EEPROM with password protection, dual interface & energy harvesting: 400 kHz I2C bus & ISO 15693 RF protocol at 13.56 MHz. http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/DM00047008.pdf

  • T. Clausen, U. Herberg, M. Philipp, A critical evaluation of the ipv6 routing protocol for low power and lossy networks (rpl), in Proceedings of the 2011 I.E. 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (IEEE, 2011), pp. 365–372

    Google Scholar 

  • T.H. Clausen, A.C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh, U. Herberg, C. Lavenu, T. Lys, J. Dean, The Lightweight On-demand Ad hoc Distance-Vector Routing Protocol—Next Generation (LOADng). Draft-clausen-lln-loadng-13. Work in progress (2015)

    Google Scholar 

  • T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (2008)

    Google Scholar 

  • A. Dunkels, B. Gronvall, T. Voigt, Contiki—a lightweight and flexible operating system for tiny networked sensors, in Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, 2004 (2004), pp. 455–462

    Google Scholar 

  • A. Dunkels, F. Osterlind, N. Tsiftes, Z. He, Software-based on-line energy estimation for sensor nodes, in Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets ’07 (ACM, New York, NY, 2007), pp. 28–32

    Google Scholar 

  • A. Dunkels, The ContikiMAC radio duty cycling protocol. Technical report, Swedish Institute of Computer Science (SICS) (2011)

    Google Scholar 

  • IEEE. 802.15.4-2011: IEEE standard for local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) (2011)

    Google Scholar 

  • C.-A. La, M. Heusse, A. Duda, Link reversal and reactive routing in low power and lossy networks, in Proceedings of the 2013 I.E. 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) (2013), pp. 3386–3390.

    Google Scholar 

  • G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944 (2007)

    Google Scholar 

  • M.R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L.A. Grieco, G. Boggia, M. Dohler, Standardized protocol stack for the internet of (important) things. Commun. Surv. Tutorials IEEE 15(3), 1389–1406 (2013)

    Google Scholar 

  • E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2. RFC 6347 (2012)

    Google Scholar 

  • G. Romaniello, Energy Efficient Protocols for Harvested Wireless Sensor Networks. PhD thesis, Grenoble Alps University, March 2015

    Google Scholar 

  • S. Sciancalepore, M. Vucinic, G. Piro, G. Boggia, T. Watteyne, Link-layer security in TSCH networks: effect on slot duration. Trans. Emerg. Telecommun. Technol. (2016)

    Google Scholar 

  • L. Seitz, S. Gerdes, G. Selander, M. Mani, S. Kumar, Use Cases for Authentication and Authorization in Constrained Environments. RFC 7744 (2016)

    Google Scholar 

  • Z. Shelby, K. Hartke, C. Bormann, Constrained Application Protocol (CoAP). RFC 7252 (2014)

    Google Scholar 

  • STMicroelectronics. STM32L1 Series. http://www.st.com/stm32l1

  • Swedish ICT. The Contiki OS. http://www.contiki-os.org/

  • F. Todeschini, Dimensionnement energetique de reseaux de capteurs ultra-compacts autonomes en energie. PhD thesis, Supelec, 2014

    Google Scholar 

  • F. Todeschini, C. Planat, P. Milazzo, S. Tricomi, P. Urard, P. Benabes, A nano quiescent current power management for autonomous wireless sensor network, in Proceedings of the IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS) December 2013 (2013), pp. 815–818

    Google Scholar 

  • L.-O. Varga, G. Romaniello, M. Vučinić, M. Favre, A. Banciu, R. Guizzetti, C. Planat, P. Urard, M. Heusse, F. Rousseau, O. Alphand, E. Duble, A. Duda, GreenNet: an energy harvesting IP-enabled wireless sensor network. IEEE Internet Things J. (2015)

    Google Scholar 

  • L.-O. Varga, Multi-hop Energy Harvesting Wireless Sensor Networks: Routing and Low Duty-cycle Link Layer. PhD thesis, Grenoble Alps University, December 2015

    Google Scholar 

  • M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, R. Guizzetti, OSCAR: Object security architecture for the Internet of Things. Elsevier Ad Hoc Netw 32, 3–16 (2015a)

    Article  Google Scholar 

  • M. Vučinić, B. Tourancheau, T. Watteyne, F. Rousseau, A. Duda, R. Guizzetti, L. Damon, DTLS Performance in duty-cycled networks, in Proceedings of the IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), August 2015 (2015), pp. 1–6

    Google Scholar 

  • M. Vučinić, Architectures and Protocols for Secure and Energy-Efficient Integration of Wireless Sensor Networks with the Internet of Things. PhD thesis, Grenoble Alps University, November 2015

    Google Scholar 

  • T. Winter, P. Thubert, A. Brandt, J.W. Hui, R. Kelsey, P. Levis, K.S.J. Pister, R. Struik, J. Philippe Vasseur, R.K. Alexander, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550, March 2012

    Google Scholar 

  • ZigBee Alliance. ZigBee Smart Energy Profile 2.0 http://www.zigbee.org/zigbee-for-developers/application standards/zigbeesmartenergy/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Urard .

Editor information

Editors and Affiliations

Glossary

AES-CCM

Advanced Encryption Standard (Counter with CBC MAC)

BI

Beacon Interval

CoAP

Constrained Application Protocol

CoRE

Constrained RESTfull Environments

CSMA/CA

Carrier Sense Mulitple Access with Collision Avoidance

DAAA

Distributed Address Allocation Algorithm

DAO

Destination Advertisement Object

DIO

DODAG Information Object

DODAG

Destination Object Directed Assisted Graph

DTLS

Datagram Transport Layer Security

ER

Edge Router

FFD

Full Functionality Device

GUI

Graphical User Interface

IETF

Internet Engineering Task Force

IoT

Internet of Things

LLN

Low power and Lossy Network

Lux

SI unit for luminous emittance

LOADng

6LoWPAN Ad hoc On-Demand distance vector routiNG

MAC

Medium Access Control

NDEF

NFC Data Exchange Format

NFC

Near Field Communication

PAN

Personal Area Network

PHY

PHYsical link (ie: the HW radio)

PV

Photo Voltaic cell

RDC

Radio Duty Cycle

REST

Representational State Transfer

RFD

Reduced Functionality Device

ROLL

Routing Over Low power and Lossy networks

RPL

IPv6 Routing Protocol for LLNs

RREQ

Route Request

RREP

Route Replay

RTT

Round Trip Time

SD

Superfame duration

SON

Self Organizing Network

TLS

Transport Security Layer

WSAN

Wireless Sensor & Actuator Network

6LoWPAN

IPv6 over Low power Wireless Personal Area Networks

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Urard, P., Varga, L., Vučinić, M., Guizzetti, R. (2017). An IPv6 Energy-Harvested WSN Demonstrator Compatible with Indoor Applications. In: Alioto, M. (eds) Enabling the Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-51482-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51482-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51480-2

  • Online ISBN: 978-3-319-51482-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics