Cultural Ant Colony Optimization on GPUs for Travelling Salesman Problem

  • Olgierd UnoldEmail author
  • Radosław Tarnawski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10122)


Ant Colony Optimization (ACO) is a well-established metaheuristic successfully applied to solve hard combinatorial optimization problems, including Travelling Salesman Problem (TSP). However, ACO algorithm as many population-based approaches has some disadvantages, such as lower solution quality and longer computational time. To overcome these issues, parallel Cultural Ant Colony Optimization (pCACO) is introduced in this paper. The proposed approach hybridises Cultural Algorithm with ACO-based \(\mathcal {MAX}\)-\(\mathcal {MIN}\) Ant System. pCACO has been implemented on Graphics Processing Units (GPUs) using CUDA programming model. Through testing nine benchmark asymmetric TSP problems, the experimental results show the new method enhances the solution quality when compared to sequential and parallel ACO, yielding comparable computational time to parallel ACO.


Travelling Salesman Problem Ant Colony Optimization Cultural Algorithm GPU computing CUDA architecture 



The work was supported by statutory grant of the Wroclaw University of Science and Technology, Poland.


  1. 1.
    Alba, E., Leguizamon, G., Ordonez, G.: Two models of parallel ACO algorithms for the minimum tardy task problem. Int. J. High Perform. Syst. Archit. 1(1), 50–59 (2007)CrossRefGoogle Scholar
  2. 2.
    Bullnheimer, B., Hartl, R.F., Strauß, C.: A new rank based version of the ant system: a computational study. Central Eur. J. Oper. Res. Econ. 7(1), 25–38 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the ant system. In: De Leone, R., Murli, A., Pardalos, P.M., Toraldo, G. (eds.) High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization, vol. 24, pp. 87–100. Springer, Boston (1998). doi: 10.1007/978-1-4613-3279-4_6 CrossRefGoogle Scholar
  4. 4.
    Catala, A., Jaen, J., Mocholi, J.A.: Strategies for accelerating ant colony optimization algorithms on graphical processing units. In: IEEE Congress on Evolutionary Computation, CEC 2007, pp. 492–500. IEEE (2007)Google Scholar
  5. 5.
    Chu, D., Zomaya, A.: Parallel ant colony optimization for 3D protein structure prediction using the HP lattice model. In: Nedjah, N., de Macedo, M.L., Alba, E. (eds.) Parallel Evolutionary Computations. Studies in Computational Intelligence, vol. 22, pp. 177–198. Springer, Heidelberg (2006). doi: 10.1007/3-540-32839-4_9 CrossRefGoogle Scholar
  6. 6.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  7. 7.
    Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)CrossRefGoogle Scholar
  8. 8.
    Delisle, P., Gravel, M., Krajecki, M., Gagné, C., Price, W.L.: A shared memory parallel implementation of ant colony optimization. In: Proceedings of the 6th Metaheuristics International Conference, pp. 257–264 (2005)Google Scholar
  9. 9.
    Doerner, K.F., Hartl, R.F., Benkner, S., Lucka, M.: Parallel cooperative savings based ant colony optimization - multiple search and decomposition approaches. Parallel Process. Lett. 16(03), 351–369 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)Google Scholar
  11. 11.
    Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. BioSystems 43(2), 73–81 (1997)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Maniezzo, V., Colorni, A., Maniezzo, V.: Positive feedback as a search strategy. Technical report 91–016, Dipartimento di Elettronica, Politecnico di Milano, Italy (1991)Google Scholar
  13. 13.
    Gambardella, L.M., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: International Conference on Evolutionary Computation, pp. 622–627 (1996)Google Scholar
  14. 14.
    Gambardella, L.M., Dorigo, M., Prieditis, A., Russell, S.: Ant-Q: a reinforcement learning approach to the traveling salesman problem. In: Proceedings of ML 1995, Twelfth International Conference on Machine Learning, pp. 252–260. Morgan Kaufmann (1995)Google Scholar
  15. 15.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  16. 16.
    Hoffman, K.L., Padberg, M., Rinaldi, G.: Traveling salesman problem. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 1573–1578. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Islam, M.T., Thulasiraman, P., Thulasiram, R.K.: A parallel ant colony optimization algorithm for all-pair routing in MANETs. In: Parallel and Distributed Processing Symposium, p. 8. IEEE (2003)Google Scholar
  18. 18.
    Jiening, W., Jiankang, D., Chunfeng, Z.: Implementation of ant colony algorithm based on GPU. In: 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization, pp. 50–53. IEEE (2009)Google Scholar
  19. 19.
    Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev. 13(2), 129–170 (1999)CrossRefGoogle Scholar
  20. 20.
    Lenstra, J.K., Kan, A.R., Lawler, E.L., Shmoys, D.: The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization. Wiley, New York (1985)zbMATHGoogle Scholar
  21. 21.
    Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006). doi: 10.1007/11839088_20 CrossRefGoogle Scholar
  22. 22.
    Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. J. Heuristics 8(3), 305–320 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Nvidia: Nvidia CUDA (2016).
  24. 24.
    Reinhelt, G.: TSPLIB: a library of sample instances for the TSP (and related problems) from various sources and of various types (2014).
  25. 25.
    Reynolds, R.G.: An introduction to cultural algorithms. In: Proceedings of the Third Annual Conference on Evolutionary Programming, pp. 131–139, Singapore (1994)Google Scholar
  26. 26.
    Scheuermann, B., So, K., Guntsch, M., Middendorf, M., Diessel, O., ElGindy, H., Schmeck, H.: Fpga implementation of population-based ant colony optimization. Appl. Soft Comput. 4(3), 303–322 (2004)CrossRefGoogle Scholar
  27. 27.
    Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998). doi: 10.1007/BFb0056914 CrossRefGoogle Scholar
  28. 28.
    Stützle, T., Dorigo, M.: ACO algorithms for the traveling salesman problem. In: Evolutionary Algorithms in Engineering and Computer Science, pp. 163–183 (1999)Google Scholar
  29. 29.
    Stützle, T., Hoos, H.: MAX-MIN ant system and local search for the traveling salesman problem. In: 1997 IEEE International Conference on Evolutionary Computation, pp. 309–314. IEEE (1997)Google Scholar
  30. 30.
    Sun, X., Zhang, Y., Ren, X., Chen, K.: Optimization deployment of wireless sensor networks based on culture-ant colony algorithm. Appl. Math. Comput. 250, 58–70 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Wang, P., Li, H., Zhang, B.: A GPU-based parallel ant colony algorithm for scientific workflow scheduling. Int. J. Grid Distrib. Comput. 8(4), 37–46 (2015)CrossRefGoogle Scholar
  32. 32.
    Wei, K.C., Wu, C.c., Wu, C.J.: Using CUDA GPU to accelerate the ant colony optimization algorithm. In: 2013 International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 90–95. IEEE (2013)Google Scholar
  33. 33.
    Wei, X., Han, L., Hong, L.: A modified ant colony algorithm for traveling salesman problem. Int. J. Comput. Commun. Control 9(5), 633–643 (2014)CrossRefGoogle Scholar
  34. 34.
    Xu, J., Zhang, M., Cai, Y.: Cultural ant algorithm for continuous optimization problems. Appl. Math. Inf. Sci 7(2L), 705–710 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    You, Y.S.: Parallel ant system for traveling salesman problem on GPUs. In: Eleventh Annual Conference on Genetic and Evolutionary Computation, pp. 1–2 (2009)Google Scholar
  36. 36.
    Yuan, S., Skinner, B., Huang, S., Liu, D.: A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms. Eur. J. Oper. Res. 228(1), 72–82 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer Engineering, Faculty of ElectronicsWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations