Skip to main content

Design of Warped Stretch Transform

  • Chapter
  • First Online:
Artificial Intelligence in Label-free Microscopy

Abstract

Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450(7172), 1054–1057.

    Article  Google Scholar 

  2. Ng, W., Rockwood, T., & Reamon, A. (2014). Demonstration of channel-stitched photonic time stretch analog-to-digital converter with enob > 8 for a 10 ghz signal bandwidth. In GOMACTech (p. 26.2). Washington, DC: US Department of Defense.

    Google Scholar 

  3. Goda, K., & Jalali, B. (2013). Dispersive fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7(2), 102–112.

    Article  Google Scholar 

  4. Goda, K., Tsia, K. K., & Jalali, B. (2009). Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458(7242), 1145–1149.

    Article  Google Scholar 

  5. Mahjoubfar, A., Goda, K., Ayazi, A., Fard, A., Kim, S. H., & Jalali, B. (2011). High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 98(10), 101107.

    Article  Google Scholar 

  6. Mahjoubfar, A., Goda, K., Wang, C., Fard, A., Adam, J., Gossett, D. R., Ayazi, A., Sollier, E., Malik, O., Chen, E., et al. (2013). 3d ultrafast laser scanner. In SPIE LASE (pp. 86110N–86110N). Washington, DC: International Society for Optics and Photonics.

    Google Scholar 

  7. Mahjoubfar, A., Chen, C., Niazi, K. R., Rabizadeh, S., & Jalali, B. (2013). Label-free high-throughput cell screening in flow. Biomedical Optics Express, 4(9), 1618–1625.

    Article  Google Scholar 

  8. Jalali, B., & Asghari, M. H. (2014). The anamorphic stretch transform: Putting the squeeze on ‘big data’. Optics and Photonics News, 25(2), 24–31.

    Article  Google Scholar 

  9. Asghari, M. H., & Jalali, B. (2014). Experimental demonstration of optical real-time data compression. Applied Physics Letters, 104(11), 111101.

    Article  Google Scholar 

  10. Jalali, B., Chan, J., & Asghari, M. H. (2014). Time–bandwidth engineering. Optica, 1(1), 23–31.

    Article  Google Scholar 

  11. Chan, J., Mahjoubfar, A., Asghari, M., & Jalali, B. (2014). Reconstruction in time-bandwidth compression systems. Applied Physics Letters, 105(22), 221105.

    Article  Google Scholar 

  12. Valley, G. C., Sefler, G. A., & Shaw, T. J. (2012). Compressive sensing of sparse radio frequency signals using optical mixing. Optics Letters, 37(22), 4675–4677.

    Article  Google Scholar 

  13. Goda, K., Ayazi, A., Gossett, D. R., Sadasivam, J., Lonappan, C. K., Sollier, E., Fard, A. M., Hur, S. C., Adam, J., Murray, C., et al. (2012). High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 109(29), 11630–11635.

    Article  Google Scholar 

  14. Goda, K., Solli, D. R., Tsia, K. K., & Jalali, B. (2009). Theory of amplified dispersive fourier transformation. Physical Review A, 80(4), 043821.

    Article  Google Scholar 

  15. Kelkar, P. V., Coppinger, F., Bhushan, A. S., & Jalali, B. (1999). Time-domain optical sensing. Electronics Letters, 35(19), 1661–1662.

    Article  Google Scholar 

  16. Solli, D. R., Gupta, S., & Jalali, B. (2009). Optical phase recovery in the dispersive fourier transform. Applied Physics Letters, 95(23), 231108.

    Article  Google Scholar 

  17. Jalali, B., & Mahjoubfar, A. (2015). Tailoring wideband signals with a photonic hardware accelerator. Proceedings of the IEEE, 103(7), 1071–1086.

    Article  Google Scholar 

  18. Chen, C. L., Mahjoubfar, A., & Jalali, B. (2015). Optical data compression in time stretch imaging. PLoS One, 10(4), e0125106.

    Article  Google Scholar 

  19. DeVore, P. T. S., Buckley, B. W., Asghari, M. H., Solli, D. R., & Jalali, B. (2014). Coherent time-stretch transform for near-field spectroscopy. IEEE Photonics Journal, 6, 3300107.

    Article  Google Scholar 

  20. Chen, C., Mahjoubfar, A., Huang, A., Niazi, K., Rabizadeh, S., & Jalali, B. (2014). Hyper-dimensional analysis for label-free high-throughput imaging flow cytometry. In CLEO: Applications and technology (pp. AW3L–2). Washington, DC: Optical Society of America.

    Google Scholar 

  21. Bosworth, B. T., & Foster, B. T. (2013). High-speed ultrawideband photonically enabled compressed sensing of sparse radio frequency signals. Optics Letters, 38(22), 4892–4895.

    Article  Google Scholar 

  22. Diebold, E. D., Hon, N. K., Tan, Z., Chou, J., Sienicki, T., Wang, C., & Jalali, B. (2011). Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Optics Express, 19(24), 23809–23817.

    Article  Google Scholar 

  23. Coppinger, F., Bhushan, A. S., & Jalali, B. (1998). Time magnification of electrical signals using chirped optical pulses. Electronics Letters, 34(4), 399–400.

    Article  Google Scholar 

  24. Gupta, S., & Jalali, B. (2008). Time-warp correction and calibration in photonic time-stretch analog-to-digital converter. Optics Letters, 33(22), 2674–2676.

    Article  Google Scholar 

  25. Liu, J.-M. (2005). Photonic devices. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  26. Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-time signal processing. Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  27. Walmsley, I. A., & Dorrer, C. (2009). Characterization of ultrashort electromagnetic pulses. Advances in Optics and Photonics, 1(2), 308–437.

    Article  Google Scholar 

  28. Jaganathan, K., Oymak, S., & Hassibi, B. (2012). Recovery of sparse 1-d signals from the magnitudes of their fourier transform. In International Symposium on Information Theory Proceedings (ISIT) (pp. 1473–1477). Cambridge, MA: IEEE.

    Google Scholar 

  29. Han, Y., & Jalali, B. (2005). Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(8), 1502–1507.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mahjoubfar, A., Chen, C.L., Jalali, B. (2017). Design of Warped Stretch Transform. In: Artificial Intelligence in Label-free Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-51448-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51448-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51447-5

  • Online ISBN: 978-3-319-51448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics