Validation of a Dynamic Simulation of a Classroom HVAC System by Comparison with a Real Model

  • Miguel Ángel CampanoEmail author
  • Armando Pinto
  • Ignacio Acosta
  • Juan J. Sendra


Schools require thermal comfort in their classrooms , but some uncertainty arises as how their HVAC systems will actually provide it, especially given their high internal loads and mechanical ventilation diffusion. Thus, it is necessary to resort to computational fluid dynamics (CFD) for developing predictive models; nevertheless, the reliability of the simulation tool has to be verified, so the main objective of this work is to define and perform the validation process of a thermal dynamic simulation tool by comparison with a real room. A validation protocol has been detailed for dynamic simulation tools, in medium-sized spaces with high internal loads, by comparing with the measured air temperature values of an existing standard classroom, according to ISO 7726:2002. The chosen standard classroom for this comparison belongs to “Eça de Queirós” secondary school of Lisbon (Portugal). To that effect, 80 thermocouple sensors were used for the characterization of its indoor thermal behaviour. A mean bias error (MBE) of 0.21 °C was obtained, with a maximum standard deviation of 0.47 °C, which is under the maximum limit of ±0.5 °C established by this standard. The application of this methodology for validating the Design Builder software proves the reliability of this tool in such type of venues.


CFD Software validation HVAC design Energy efficiency Classrooms 



This work has been partially funded by the IV Plan Propio de Investigación de la Universidad de Sevilla. The authors wish to express their gratitude to the “Laboratório Nacional de Engenharia Civil” and the Public Entity “Parque Escolar” from Portugal.


  1. Campano MA (2015) Confort térmico and eficiencia energética en espacios con alta carga interna climatizados: Aplicación a espacios docentes no universitarios en Andalucía. PhD Dissertation, Universidad de Sevilla, SevillaGoogle Scholar
  2. Campano MA, Acosta I, Fernández-Agüera J, Sendra JJ (2015) Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate. J Build Perform Simul 8(4):226–238. doi: 10.1080/19401493.2014.913683 CrossRefGoogle Scholar
  3. Conceição EZE, Lúcio MMJR (2011) Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment. Appl Math Model 35:1292–1305. doi: 10.1016/j.apm.2010.09.006 CrossRefGoogle Scholar
  4. European Committee for Standarisation (1998) Ventilation for buildings. Design criteria for the indoor environments, CR 1752:1998. European Committee for Standarisation, BruxellesGoogle Scholar
  5. International Organization for Standardization (2002) Ergonomics of the Thermal Environment. Instruments for Measuring Physical Quantities, ISO 7726:2002. International Organization for Standardization, GenevaGoogle Scholar
  6. International Organization for Standardization (2004) Ergonomics of the thermal environment—Determination of metabolic rate, ISO 8996:2004. International Organization for Standardization, GenevaGoogle Scholar
  7. International Organization for Standardization (2005) Ergonomics of the Thermal Environment. Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, ISO 7730:2005. International Organization for Standardization, GenevaGoogle Scholar
  8. Karimipanah T, Awbi HB, Sandberg M, Blomqvist C (2007) Investigation of air quality, comfort parameters and effectiveness for two floor-level air supply systems in classrooms. Build Environ 42(2):647–655. doi: 10.1016/j.buildenv.2005.10.016 CrossRefGoogle Scholar
  9. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  10. Negrao COR (1995) Conflation of computational fluid dynamics and building thermal simulation. PhD Dissertation, University of Strathclyde, GlasgowGoogle Scholar
  11. Novoselac A, Burley BJ, Srebric J (2006) Development of new and validation of existing convection correlations for rooms with displacement ventilation systems. Energy Build 38:163–173. doi: 10.1016/j.enbuild.2005.04.005 CrossRefGoogle Scholar
  12. School of Built and Natural Environment of Northumbria University. (2011) An inter-program analysis of computational dynamics based on PHOENICS and design builder. Available:,com_docman/task,doc_download/gid,39/Itemid,30/. Accessed 10 Mar 2016
  13. Srebric J, Vukovic V, Guoqing H, Yang X (2008) CFD boundary conditions for contaminant dispersion, heat transfer and airflow simulations around human occupants in indoor environments. Build Environ 43(3):294–303. doi: 10.1016/j.buildenv.2006.03.023 CrossRefGoogle Scholar
  14. Stamou A, Katsiris I (2006) Verification of a CFD model for indoor airflow and heat transfer. Build Environ 41(9):1171–1181. doi: 10.1016/j.buildenv.2005.06.029 CrossRefGoogle Scholar
  15. Yang W, Fu-Jun Z, Kuckelkorn J, Di L, Jun L, Jun-Liang Z (2014) Classroom energy efficiency and air environment with displacement natural ventilation in a passive public school building. Energy Build 70:258–270. doi: 10.1016/j.enbuild.2013.11.071 CrossRefGoogle Scholar
  16. Zhai ZJ, Chen QY (2004) Sensitivity analysis and application guides for integrated building energy and CFD simulation. Energy Build 38(9):1060–1068. doi: 10.1016/j.enbuild.2005.12.003 CrossRefGoogle Scholar
  17. Zhai ZJ, Chen Q, Haves P, Klems JH (2002) On approaches to couple energy simulation and computational fluid dynamics programs. Build Environ 37:857–864. doi: 10.1016/S0360-1323(02)00054-9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel Ángel Campano
    • 1
    Email author
  • Armando Pinto
    • 2
  • Ignacio Acosta
    • 1
  • Juan J. Sendra
    • 1
  1. 1.Instituto Universitario de Arquitectura y Ciencias de la ConstrucciónEscuela Técnica Superior de Arquitectura de la Universidad de SevillaSevilleSpain
  2. 2.Laboratório Nacional de Engenharia CivilNúcleo de Acústica, Iluminação, Componentes e InstalaçõesLisbonPortugal

Personalised recommendations