Study of Fine Mortar Powder from Different Waste Sources for Recycled Concrete Production

  • Eduardo Aguirre-MaldonadoEmail author
  • Francisco Hernández-Olivares


Searching new options to exploit crushing concrete waste or recycled mortar powder fines (RMF) has lead the development of new processes for recycling concrete. By heat treatments allow reincorporates concrete waste material into new concrete manufacturing process. The current research determines chemical composition of burned recycled mortar powder fines (BRMF) obtained from different sources. Also, this experimental research, analyzes how BRMF in addition to cement, affects to compressive strength of composite. Using a 30% BRMF ratio for replacing Ordinary Portland Cement (OPC), the study determined that the direct use of this material, decreases compressive strength of composite, reaching 21–54% of normal strength in most specimens. Based in Ca/Si ratio study, is observed how compressive strength is related to Ca/Si balance of the mixture, where the specimens with Ca/Si higher radio reach at 72% of normal compressive strength, compared to mixtures using only cement. Thus, experimental study noticed that the main criterion for assessing the use of RMF is the concentration of CaO, there are no significant differences between RFM from concrete or mortar prepared and put in work, unlike waste or special premixed mortars.


Concrete waste Recycled Sustainability Cement Compressive strength 



The authors acknowledge the support and management to carry out this work, to the Ph.D. Sofia González Sanz, who served in the post of Department of Architecture and Art Director at the Universidad Tecnica Particular de Loja (UTPL). We are also grateful to the UTPL and its representatives for the support and provision of laboratories and equipment necessary for the conduct of the experimental phase of this work.


  1. Castellote M, Alonso C, Andrade C, Turrillas X, Campo J (2004) Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cem Concr Res 34(9):1633–1644CrossRefGoogle Scholar
  2. EHE-08 (2008) Instrucción para el proyecto y la ejecución del hormigón estructural. Anejo 15: hormigón reciclado. Ministerio de Fomento. EspañaGoogle Scholar
  3. Farage MR, Sercombe J, Gallé C (2003) Rehydration and microstructure of cement paste after heating at temperatures up to 300 °C. Cem Concr Res 33:1047–1056CrossRefGoogle Scholar
  4. García CT (2012) Hormigón reciclado de aplicación estructural, durabilidad en ambiente marino y comportamiento a fatiga. Dissertation, Universidad de CantabriaGoogle Scholar
  5. HaGa K, Shibata M, Hironag M, Tanaka S, Nagasaki S (2002) Silicate anion atructural change in calcium silicate hydrate gel on dissolution of hydrated cement. J Nucl Sci Technol 39(5):540–547CrossRefGoogle Scholar
  6. INEC (2010) Instituto Nacional de Estadísticas y Censos. Censo de población y vivienda. Quito, EcuadorGoogle Scholar
  7. Kwon E, Ahn J, Cho B, Park D (2015) A study on development of recycled cement made from waste cementitious powder. Constr Build Mater 83:174–180CrossRefGoogle Scholar
  8. NTE INEN 488 (2009) Cemento hidráulico. Determinación de la resistencia a la compresión de morteros en cubos de 50 mm de arista. Instituto Ecuatoriano de Normalización. Quito, EcuadorGoogle Scholar
  9. NTE INEN 2380 (2011) Cementos hidráulicos. Requisitos de desempeño para cementos hidráulicos. Instituto Ecuatoriano de Normalización. Quito, EcuadorGoogle Scholar
  10. Okada Y, Sasaki K, Zhong B, Ishida H, Mitsuda T (1994) Formation processes of b-C2 S by the decomposition of hydrothermally prepared C–S–H with Ca (OH) 2. J Am Ceram Soc 77(5):1319–1323CrossRefGoogle Scholar
  11. Oksri-Nelfia L, Mahieux P, Amiri O, Turcry P, Lux J (2016) Reuse of recycled crushed concrete fines as mineral addition in cementitious materials. Mater Struct 49:3239–3251CrossRefGoogle Scholar
  12. Pedro D, de Brito J, Evangelista L (2014) Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr Build Mater 71:141–151CrossRefGoogle Scholar
  13. Rui Y, Zhonghe S, Jun D (2013) Using dehydrated cement paste as new type of cement additive. Mater J 110(4):395–402Google Scholar
  14. Shui Z, Yu R, Dong J (2011) Activation of fly ash with dehydrated cement paste. ACI Mater J 108(2):204–208Google Scholar
  15. Shui Z, Xuan D, Wan H, Cao B (2008) Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment. Constr Build Mater 22(8):1723–1729CrossRefGoogle Scholar
  16. Shui Z, Xuan D, Chen W, Yu R, Zhang R (2009) Cementitious characteristics of hydrated cement paste subjected to various dehydration temperatures. Constr Build Mater 23(1):531–537CrossRefGoogle Scholar
  17. Tam VW, Tam C (2008) Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc. Constr Build Mater 22:2068–2077CrossRefGoogle Scholar
  18. Xinwei M, Zhaoxiang H, Xueying L (2010) Reactivity of dehydrated cement paste from waste concrete subject to heat treatment. In: Second international conference on sustainable construction materials and technologies (June 2010). Ancona-Italia: Coventry University and the University of Wisconsin MilwaukeeGoogle Scholar
  19. Zhang Q, Ye G (2011) Microstructure analysis of heated Portland cement paste. Proc Eng 14:830–836CrossRefGoogle Scholar
  20. Zonghui Z, Jinbang W, Decheng Z, Xuexu Z, Xiuzhi Z (2012) Study on preparing process for a recycled concrete. Proc Eng 27:357–364CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eduardo Aguirre-Maldonado
    • 1
    Email author
  • Francisco Hernández-Olivares
    • 2
  1. 1.Departamento de ArquitecturaUniversidad Tecnica Particular de LojaLojaEcuador
  2. 2.Department of Building Construction and Architectural Technology, Superior Technical School of ArchitectureTechnical University of MadridMadridSpain

Personalised recommendations