Assessment of the Relationship Between Diameter and Tensile Strength of Piassaba (Aphandra natalia) Fibers

  • Cristian Balcázar-ArciniegaEmail author
  • Francisco Hernández-Olivares


Sustainable development of materials is a triangle between the ecological, economic and social that aims to reduce the extraction and use of conventional materials, through the use of regenerable natural materials that cause minimal impact or like the incorporation of waste and by-products that can be recycled . Natural fibers have characteristics of technical and economic solution, an important source for its use are the palms, considered one of the most economically important plants group. Of this variety, piassaba is the name of the hard fibers brown, considered as a non-timber forest product, which can be obtained from three species of palm: Leopoldinia piassaba Wallace, Attalea funifera and Aphandra natalia . Piassaba of Aphandra natalia displays mechanical properties similar to Leopoldinia piassaba and Attalea Funifera already tested of composite materials . Like any other natural fiber, the Aphandra natalia fibers have different diameters even in each fiber. In several lignocellulosic fibers has been found that the dimension of the diameter it affect value of the tensile strength . In this work a Weibull analysis of sisal fibers tensile strength was performed to find a correlation with the diameter. It was determined that a smaller diameter of the largest fiber tensile strength, indicating a hyperbolic equation between average strength and diameter.


Weibull analysis Piassaba Aphandra natalia Tensile strength 



The authors thank the support to this investigation by: Ph.D. Sofía Sanz González de Lema.


  1. Alves Fidelis ME, Pereira TVC, Gomes ODFM, De Andrade Silva F, Toledo Filho RD (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2(2):149–157.
  2. Balslev H, Knudsen TR, Byg A, Kronborg M (2010) Traditional knowledge, use, and management of Aphandra natalia (Arecaceae) in Amazonian Peru. Econ Bot 64(1):55–67CrossRefGoogle Scholar
  3. Carolina M, Teles A, Oliveira G, Rodrigues G (2015) Evaluation of the diameter influence on the tensile strength of pineapple leaf fibers (PALF) by Weibull method. Mater Res 18(Suppl 2):185–192Google Scholar
  4. d’Almeida JRM, Aquino RCMP, Monteiro SN (2006) Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos Part A Appl Sci Manuf 37(9):1473–1479.
  5. da Costa LL, Loiola RL, Monteiro SN (2010) Diameter dependence of tensile strength by weibull analysis: part I bamboo fiber. Rev Mater 15(2):97–102.
  6. Elzubair A, Maria C, Bonelli C (2007) Morphological, structural, thermal and mechanical characterization of piassava fibers, vol 478, pp 37–41. (April 2013)
  7. Kronborg M, Grández CA, Ferreira E, Balslev H (2008) Aphandra natalia (Arecaceae)—A little known source of piassaba fibers from the western Amazon. Revista Peruana de Biología 15(November):103–113Google Scholar
  8. Martius A (2015) Artigo 38(2):161–165Google Scholar
  9. Monteiro SN, Coeli R, Aquino MP, Lopes FPD, Roberto J, Almeida M (2006) Tenacidade ao Entalhe por Impacto Charpy de Compósitos de Poliéster Reforçados com Fibras de Piaçava, pp 204–210Google Scholar
  10. Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Amaral Da Silva I L, Da Costa LL (2011a) Natural lignocellulosic fibers as engineering materials-an overview. Metall Mater Trans A Phys Metall Mater Sci 42(10):2963–2974.
  11. Monteiro SN, Satyanarayana KG, Ferreira AS, Neto JB, Portela TG, Researcher V (2011b) Selection of high strength natural fibers. Rev Matér 15(4):488–505.
  12. Nacional C, Trabajo DECDE (2011) NTP 331 : Fiabilidad : la distribución de Weibull, pp 1–13Google Scholar
  13. Pedersen HB (1992) Uses And Management Of Aphandra Natalia (Palmae) in Ecuador. Bull Inst Fr Études Andines 21(2):741–753Google Scholar
  14. Pons JM (1995) Método de ensayo para la determinación del módulo inicial de elasticidad de las fibras individuales. Annales Scientifiques Textiles Belge 2, 11. Retrieved from
  15. Shimazaki K, Colombo MA (2010). Gelatin/piassava composites treated by electron beam radiation, pp 303–308Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristian Balcázar-Arciniega
    • 1
    • 2
    Email author
  • Francisco Hernández-Olivares
    • 2
  1. 1.Department of Architecture and Arts, School of ArchitectureUniversidad Tecnica Particular de LojaLojaEcuador
  2. 2.Department of Building Construction and Architectural Technology, School of ArchitecturePolytechnic University of MadridMadridSpain

Personalised recommendations