Energy Retrofitting and Social Housing Instrumentation Attending Passive Criteria. Case Study in Winter

  • S. G. MelgarEmail author
  • J. M. Andújar
  • M. A. Bohórquez


This paper analyzes the conditions of interior comfort in passive houses in winter, depending on the daily variation of indoor air temperature under sealed envelope conditions. Shows, based on data obtained by real-time instrumentation of the rehabilitated housing, that is possible to achieve comfort conditions compatible with energy poverty situations in winter, without active cooling systems. Proposes the adaptation of passivhaus standard for energy rehabilitation of existing buildings, focusing actions on improving the quality and continuity of the thermal envelope, minimizing air infiltration and ensuring indoor air quality by installing an air ventilation system with double flow heat recovery.


Energy efficiency Indoor facilities Nearly zero energy buildings (NZEB) Passivhaus Energy rehabilitation Energy poverty Energy wreck Energy instrumentation 



The authors would like to thank the ERDF of European Union for financial support via project “EREBA2020” of the “Programa Operativo FEDER de Andalucía 2007–2013”. We also thank all Public Works Agency and Regional Ministry of Public Works and Housing of the Regional Government of Andalusia staff and researchers for their dedication and professionalism. Similarly to Soudal and Weber, and especially LAR Architecture , Isover and Saban Construciones for their collaboration in the implementation phase of the work of energy rehabilitation of housing.


  1. Aldegheri F, Baricordi S, Bernardoni P, Brocato M, Calabrese G, Guidi V, Vincenzi D (2014) Building integrated low concentration solar system for a self-sustainable Mediterranean villa: The Astonyshine house. Energy Build 77:355–363. doi: 10.1016/j.enbuild.2014.03.058 CrossRefGoogle Scholar
  2. Asdrubali F, Bonaut M, Battisti M, Venegas M (2008) Comparative study of energy regulations for buildings in Italy and Spain. Energy Build 40(10):1805–1815. doi: 10.1016/j.enbuild.2008.03.007 CrossRefGoogle Scholar
  3. Avellaneda J, González JM, Marques G, Vidal J (2009) Technological innovation in public housing developments: the INCASOL Technological Innovation Competition. Informes de la Construccion 61(513):87–100. doi: 10.3989/ic.09.002 CrossRefGoogle Scholar
  4. Blunden K (2009) Building research housing group. Build Eng 84(8):29Google Scholar
  5. Brew JS (2011) Achieving Passivhaus standard in North America: lessons learned. Paper presented at the ASHRAE TransactionsGoogle Scholar
  6. Cagna J (2012) Montgomery primary school, exete a lesson to be learned. Build Eng 87(7):18–20Google Scholar
  7. Cellura M, Guarino F, Longo S, Mistretta M, Orioli A (2013) The role of the building sector for reducing energy consumption and greenhouse gases: an Italian case study. Renew Energy 60:586–597. doi: 10.1016/j.renene.2013.06.019 CrossRefGoogle Scholar
  8. Chow DHC, Li Z, Darkwa J (2013) The effectiveness of retrofitting existing public buildings in face of future climate change in the hot summer cold winter region of China. Energy Build 57:176–186. doi: 10.1016/j.enbuild.2012.11.012 CrossRefGoogle Scholar
  9. Chuah JW, Raghunathan A, Jha NK (2013) ROBESim: a retrofit-oriented building energy simulator based on EnergyPlus. Energy Build 66:88–103. doi: 10.1016/j.enbuild.2013.07.020 CrossRefGoogle Scholar
  10. de Fomento M (2006) Código Técnico de la Edificación. CTE-DB-HEGoogle Scholar
  11. De Luxan Garcia De Diego M, Gómez Muñoz G, Román López E (2015) Towards new energy accounting in residential building. Informes de la Construccion 67(Extra1). doi: 10.3989/ic.14.059
  12. Instituto Nacional de Estadísticas (2011) Censo de población y viviendasGoogle Scholar
  13. Irulegi O, Torres L, Serra A, Mendizabal I, Hernández R (2014) The Ekihouse: an energy self-sufficient house based on passive design strategies. Energy Build 83:57–69. doi: 10.1016/j.enbuild.2014.03.077 CrossRefGoogle Scholar
  14. Kharseh M, Al-Khawaja M (2016) Retrofitting measures for reducing buildings cooling requirements in cooling-dominated environment: residential house. Appl Therm Eng 98:352–356. doi: 10.1016/j.applthermaleng.2015.12.063 CrossRefGoogle Scholar
  15. Ministerio de Obras Públicas y Urbanismo (1979) NBE-CT-79Google Scholar
  16. Mohareb EA, Mohareb AK (2014) A comparison of greenhouse gas emissions in the residential sector of major Canadian cities. Can J Civ Eng 41(4):285–293. doi: 10.1139/cjce-2013-0465 CrossRefGoogle Scholar
  17. Murray SN, Walsh BP, Kelliher D, O’Sullivan DTJ (2014) Multi-variable optimization of thermal energy efficiency retrofitting of buildings using static modelling and genetic algorithms—a case study. Build Environ 75:98–107. doi: 10.1016/j.buildenv.2014.01.011 CrossRefGoogle Scholar
  18. Navarro I, Gutiérrez A, Montero C, Rodríguez-Ubiñas E, Matallanas E, Castillo-Cagigal M, Vega S (2014) Experiences and methodology in a multidisciplinary energy and architecture competition: Solar Decathlon Europe 2012. Energy Build 83:3–9. doi: 10.1016/j.enbuild.2014.03.073 CrossRefGoogle Scholar
  19. Ochoa CE, Capeluto IG (2008) Strategic decision-making for intelligent buildings: comparative impact of passive design strategies and active features in a hot climate. Build Environ 43(11):1829–1839. doi: 10.1016/j.buildenv.2007.10.018 CrossRefGoogle Scholar
  20. Pataky R, Áts Á, Áts-Leskó Z, Birtalan O (2014) Constructional considerations for the mobile Plus-Energy House. Energy Build 83:195–208. doi: 10.1016/j.enbuild.2014.07.015 CrossRefGoogle Scholar
  21. Ramon AP, Burgos AC (2008) Moving the entire building sector towards low CO2 emissions. Paper presented at the PLEA 2008—Towards zero energy building: 25th PLEA international conference on passive and low energy architecture, conference proceedingsGoogle Scholar
  22. Rodriguez-Ubinas E, Montero C, Porteros M, Vega S, Navarro I, Castillo-Cagigal M, Gutiérrez A (2014a) Passive design strategies and performance of Net Energy Plus Houses. Energy Build 83:10–22. doi: 10.1016/j.enbuild.2014.03.074 CrossRefGoogle Scholar
  23. Rodriguez-Ubinas E, Rodriguez S, Voss K, Todorovic MS (2014b) Energy efficiency evaluation of zero energy houses. Energy Build 83:23–35. doi: 10.1016/j.enbuild.2014.06.019 CrossRefGoogle Scholar
  24. Ruiz-Larrea C, Prieto E, Gómez A (2008) Architecture, industry and sustainability. Informes de la Construccion 60(512):35–45. doi: 10.3989/ic.08.037 CrossRefGoogle Scholar
  25. Serra Soriano B, Verdejo Gimeno P, Díaz Segura A, Merí De La Maza R (2014) Assembling sustainable ideas: the construction process of the proposal SMLsystem at the Solar Decathlon Europe 2012. Energy Build 83:185–194. doi: 10.1016/j.enbuild.2014.03.075 CrossRefGoogle Scholar
  26. Stojiljković MM, Ignjatović MG, Vučković GD (2015) Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization. Energy. doi: 10.1016/ Google Scholar
  27. Suárez R, Fragoso J (2016) Estrategias pasivas de optimización energética de la vivienda social en clima mediterráneo. Informes de la Construcción 68(541). doi:10.3989Google Scholar
  28. Terrados FJ, Moreno D (2014) “Patio” and “Botijo”: energetic strategies’ architectural integration in “Patio 2.12” prototype. Energy Build 83:70–88. doi: 10.1016/j.enbuild.2014.03.081 CrossRefGoogle Scholar
  29. Terrados-Cepeda FJ, Baco-Castro L, Moreno-Rangel D (2015) Patio 2.12: prefabricated, sustainable, self-sufficient and energy efficient house. Participation in the 2012 Solar Decathlon Competition. Informes de la Construccion 67(538). doi: 10.3989/ic.13.138

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. G. Melgar
    • 1
    • 2
    Email author
  • J. M. Andújar
    • 1
  • M. A. Bohórquez
    • 1
  1. 1.TEP 192 “Control y Robótica” Research Group, Higher Technical School of EngineeringUniversity of HuelvaPalos de La FronteraSpain
  2. 2.LAR ArquitecturaHuelvaSpain

Personalised recommendations