Advertisement

Imaging, Analysing and Interpreting Branching Morphogenesis in the Developing Kidney

  • Kieran M. Short
  • Ian M. Smyth
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation. These cells play two critical roles. Firstly, they potentiate the ongoing elaboration of the ureteric tree: remove them and branching ceases. Secondly, they harbour progenitor cells which are fated to undergo their own process of tubulogenesis to form the nephrons of the adult organ. In this chapter, we will discuss how the ureteric bud arises in the developing embryo, how it undergoes branching, how we can measure and study this process and finally the likely relevance that this process has for our understanding of congenital and acquired kidney disease.

References

  1. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindzicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15(2):157–164. doi: 10.1038/ng0297-157 CrossRefPubMedGoogle Scholar
  2. Alazami AM, Shaheen R, Alzahrani F, Snape K, Saggar A, Brinkmann B, Bavi P, Al-Gazali LI, Alkuraya FS (2009) FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am J Hum Genet 85(3):414–418. doi: 10.1016/j.ajhg.2009.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aylward S, Pizer S, Eberly D, Bullitt E (1996) Intensity ridge and widths for tubular object segmentation and description. In: Paper presented at the Proceedings of the 1996 Workshop on mathematical methods in biomedical image analysis (MMBIA ‘96)Google Scholar
  4. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22(6):1191–1207. doi: 10.1016/j.devcel.2012.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299(2):466–477. doi: 10.1016/j.ydbio.2006.08.051 CrossRefPubMedGoogle Scholar
  6. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313(1):234–245. doi: 10.1016/j.ydbio.2007.10.014 CrossRefGoogle Scholar
  7. Boyle S, Shioda T, Perantoni AO, de Caestecker M (2007) Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Dev Dyn 236(8):2321–2330. doi: 10.1002/dvdy.21242 CrossRefGoogle Scholar
  8. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128(23):4747–4756PubMedGoogle Scholar
  9. Cave AJ, Aumonier FJ (1964) The reniculus in certain balaenopterids. J R Microsc Soc 83:255–264CrossRefGoogle Scholar
  10. Cebrian C, Borodo K, Charles N, Herzlinger DA (2004) Morphometric index of the developing murine kidney. Dev Dyn 231(3):601–608. doi: 10.1002/dvdy.20143 CrossRefPubMedGoogle Scholar
  11. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, Mendelsohn C, Costantini F (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17(2):199–209. doi: 10.1016/j.devcel.2009.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Combes AN, Short KM, Lefevre J, Hamilton NA, Little MH, Smyth IM (2014) An integrated pipeline for the multidimensional analysis of branching morphogenesis. Nat Protoc 9(12):2859–2879. doi: 10.1038/nprot.2014.193 CrossRefPubMedGoogle Scholar
  13. Cullen McEwan L, Black MJ (2015) The human kidney: parallels in structure, spatial development, and timing of nephrogenesis. In: Little M (ed) Kidney development, disease, repair and regeneration. Academic Press, Boston, MAGoogle Scholar
  14. Cullen-McEwen LA, Fricout G, Harper IS, Jeulin D, Bertram JF (2002) Quantitation of 3D ureteric branching morphogenesis in cultured embryonic mouse kidney. Int J Dev Biol 46(8):1049–1055PubMedGoogle Scholar
  15. Davies JA, Hohenstein P, Chang CH, Berry R (2014) A self-avoidance mechanism in patterning of the urinary collecting duct tree. BMC Dev Biol 14:35. doi: 10.1186/s12861-014-0035-8 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381(6585):789–793. doi: 10.1038/381789a0 CrossRefPubMedGoogle Scholar
  17. Fisher CE, Michael L, Barnett MW, Davies JA (2001) Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development 128(21):4329–4338PubMedGoogle Scholar
  18. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286. doi: 10.1016/j.ydbio.2009.05.578 CrossRefGoogle Scholar
  19. Goh W, Chan K (2007) The multiresolution gradient vector field skeleton. Pattern Recogn 40(4):1255–1269. doi: 10.1016/j.patcog.2006.08.007 CrossRefGoogle Scholar
  20. Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol JASN 21(11):1891–1902. doi: 10.1681/ASN.2010040368 CrossRefPubMedGoogle Scholar
  21. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6(5):709–717CrossRefGoogle Scholar
  22. Grobstein C (1953a) Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science 118(3054):52–55CrossRefGoogle Scholar
  23. Grobstein C (1953b) Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172(4384):869–870CrossRefGoogle Scholar
  24. Grobstein C (1955) Inductive interaction in the development of the mouse metanephros. J Exp Zool 130(2):319–339. doi: 10.1002/jez.1401300207 CrossRefGoogle Scholar
  25. Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 10(2):424–440CrossRefGoogle Scholar
  26. Grobstein C (1961) Cell contact in relation to embryonic induction. Exp Cell Res Suppl 8:234–245CrossRefGoogle Scholar
  27. Gross I, Morrison DJ, Hyink DP, Georgas K, English MA, Mericskay M, Hosono S, Sassoon D, Wilson PD, Little M, Licht JD (2003) The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. J Biol Chem 278(42):41420–41430. doi: 10.1074/jbc.M306425200 CrossRefPubMedGoogle Scholar
  28. Harrison M, Langley-Evans SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101(7):1020–1030. doi: 10.1017/S0007114508057607 CrossRefPubMedGoogle Scholar
  29. Hokke SN, Armitage JA, Puelles VG, Short KM, Jones L, Smyth IM, Bertram JF, Cullen-McEwen LA (2013) Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy. PLoS One 8(3):e58243. doi: 10.1371/journal.pone.0058243 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122. doi: 10.1046/j.1523-1755.2003.00018.x CrossRefPubMedGoogle Scholar
  31. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, Tores F, Blanchet P, Perez MJ, Petrov Y, Khau Van Kien P, Roume J, Leroy B, Gribouval O, Kalaydjieva L, Heidet L, Salomon R, Antignac C, Benmerah A, Saunier S, Jeanpierre C (2014) Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet 94(2):288–294. doi: 10.1016/j.ajhg.2013.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, McGregor L, Hopkins J, Chalepakis G, Philip N, Perez Aytes A, Watt FM, Darling SM, Jackson I, Woolf AS, Scambler PJ (2005) Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37(5):520–525. doi: 10.1038/ng1549 CrossRefPubMedGoogle Scholar
  33. Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol JASN 16(7):2141–2149. doi: 10.1681/ASN.2004090776 CrossRefPubMedGoogle Scholar
  34. Kao RM, Vasilyev A, Miyawaki A, Drummond IA, McMahon AP (2012) Invasion of distal nephron precursors associates with tubular interconnection during nephrogenesis. J Am Soc Nephrol JASN 23(10):1682–1690. doi: 10.1681/ASN.2012030283 CrossRefPubMedGoogle Scholar
  35. Kerwin J, Scott M, Sharpe J, Puelles L, Robson SC, Martinez-de-la-Torre M, Ferran JL, Feng G, Baldock R, Strachan T, Davidson D, Lindsay S (2004) 3 dimensional modelling of early human brain development using optical projection tomography. BMC Neurosci 5:27. doi: 10.1186/1471-2202-5-27 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim HY, Nelson CM (2012) Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 8(2):56–64. doi: 10.4161/org.19813 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kim HY, Pang MF, Varner VD, Kojima L, Miller E, Radisky DC, Nelson CM (2015) Localized smooth muscle differentiation is essential for epithelial bifurcation during branching morphogenesis of the mammalian lung. Dev Cell 34(6):719–726. doi: 10.1016/j.devcel.2015.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181. doi: 10.1016/j.stem.2008.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127(7):1387–1395PubMedGoogle Scholar
  40. Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, D’Agati V, Gurniak C, Witke W, Costantini F (2010) Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet 6(10):e1001176. doi: 10.1371/journal.pgen.1001176 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lamberton TO, Lefevre J, Short KM, Smyth IM, Hamilton NA (2015) Comparing and distinguishing the structure of biological branching. J Theor Biol 365:226–237. doi: 10.1016/j.jtbi.2014.10.001 CrossRefPubMedGoogle Scholar
  42. Larsen M, Wei C, Yamada KM (2006) Cell and fibronectin dynamics during branching morphogenesis. J Cell Sci 119(Pt 16):3376–3384. doi: 10.1242/jcs.03079 CrossRefPubMedGoogle Scholar
  43. Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Benichou C (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54(5):1455–1462. doi: 10.1046/j.1523-1755.1998.00151.x CrossRefPubMedGoogle Scholar
  44. Lin Y, Zhang S, Tuukkanen J, Peltoketo H, Pihlajaniemi T, Vainio S (2003) Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions. Int J Dev Biol 47(1):3–13PubMedGoogle Scholar
  45. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382(9888):273–283. doi: 10.1016/S0140-6736(13)60311-6 CrossRefPubMedGoogle Scholar
  46. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130(14):3175–3185CrossRefGoogle Scholar
  47. Malkusch W, Hellinger A, Konerding M, Bruch J, Obertacke U (1995) Morphometry of experimental lung contusion: an improved quantitative method. Anal Cell Pathol J Eur Soc Anal Cell Pathol 8(4):279–286Google Scholar
  48. Merlet-Benichou C, Gilbert T, Vilar J, Moreau E, Freund N, Lelievre-Pegorier M (1999) Nephron number: variability is the rule. Causes and consequences. Lab Invest J Tech Methods Pathol 79(5):515–527Google Scholar
  49. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453(7196):745–750. doi: 10.1038/nature07005 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nakanishi K, Yoshikawa N (2003) Genetic disorders of human congenital anomalies of the kidney and urinary tract (CAKUT). Pediatr Int Off J Jpn Pediatr Soc 45(5):610–616CrossRefGoogle Scholar
  51. Nigam SK (2013) Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells Transl Med 2(12):993–1000. doi: 10.5966/sctm.2013-0076 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128(16):3105–3115PubMedGoogle Scholar
  53. Oliver J (1968) Nephrons and kidneys: a quantitative study of developmental and evolutionary mammalian renal archtectonics. Harper & Row, New York, NYGoogle Scholar
  54. Osathanondh V, Potter EL (1963) Development of human kidney as shown by microdissection. III. formation and interrelationship of collecting tubules and nephrons. Arch Pathol 76:290–302PubMedGoogle Scholar
  55. Otsu N (1979) A threshold selection method from gray-level histograms. Syst Man Cybern IEEE Trans 9(1):62–66. doi: 10.1109/TSMC.1979.4310076 CrossRefGoogle Scholar
  56. Packard A, Georgas K, Michos O, Riccio P, Cebrian C, Combes AN, Ju A, Ferrer-Vaquer A, Hadjantonakis AK, Zong H, Little MH, Costantini F (2013) Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 27(3):319–330. doi: 10.1016/j.devcel.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH (2016) Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. J Pathol 238(5):665–676. doi: 10.1002/path.4690 CrossRefPubMedGoogle Scholar
  58. Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/- mutant mice. Hum Mol Genet 9(1):1–11CrossRefGoogle Scholar
  59. Qiao J, Sakurai H, Nigam SK (1999) Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney. Proc Natl Acad Sci USA 96(13):7330–7335CrossRefGoogle Scholar
  60. Rak-Raszewska A, Hauser PV, Vainio S (2015) Organ in vitro culture: what have we learned about early kidney development? Stem Cells Int 2015:959807. doi: 10.1155/2015/959807 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F (2016) Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol 14(2):e1002382. doi: 10.1371/journal.pbio.1002382 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, Kumar S, Neuhaus TJ, Kemper MJ, Raymond RM Jr, Brophy PD, Berkman J, Gattas M, Hyland V, Ruf EM, Schwartz C, Chang EH, Smith RJ, Stratakis CA, Weil D, Petit C, Hildebrandt F (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci USA 101(21):8090–8095. doi: 10.1073/pnas.0308475101 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rumballe BA, Georgas KM, Combes AN, Ju AL, Gilbert T, Little MH (2011) Nephron formation adopts a novel spatial topology at cessation of nephrogenesis. Dev Biol 360(1):110–122. doi: 10.1016/j.ydbio.2011.09.011 CrossRefPubMedGoogle Scholar
  64. Sampogna RV, Schneider L, Al-Awqati Q (2015) Developmental programming of branching morphogenesis in the kidney. J Am Soc Nephrol JASN 26(10):2414–2422. doi: 10.1681/ASN.2014090886 CrossRefPubMedGoogle Scholar
  65. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122(6):1919–1929Google Scholar
  66. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228. doi: 10.1038/sj.emboj.7601381 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8(1):65–74. doi: 10.1016/j.devcel.2004.11.008 CrossRefPubMedGoogle Scholar
  68. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545. doi: 10.1126/science.1068206 296/5567/541 [pii]
  69. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, Cairncross O, Rumballe BA, McMahon AP, Hamilton NA, Smyth IM, Little MH (2014) Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell 29(2):188–202. doi: 10.1016/j.devcel.2014.02.017 CrossRefGoogle Scholar
  70. Short KM, Hodson MJ, Smyth IM (2010) Tomographic quantification of branching morphogenesis and renal development. Kidney Int 77(12):1132–1139. doi: 10.1038/ki.2010.42 CrossRefPubMedGoogle Scholar
  71. Short K, Hodson M, Smyth I (2013) Spatial mapping and quantification of developmental branching morphogenesis. Development 140(2):471–478. doi: 10.1242/dev.088500 dev.088500 [pii]
  72. Sims-Lucas S, Argyropoulos C, Kish K, McHugh K, Bertram JF, Quigley R, Bates CM (2009) Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys. J Am Soc Nephrol JASN 20(12):2525–2533. doi: 10.1681/ASN.2009050532 CrossRefPubMedGoogle Scholar
  73. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82(2):344–351. doi: 10.1016/j.ajhg.2007.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sperber I (1944) Studies on the mammalian kidney. Zool Bidr Upps 22:249–432Google Scholar
  75. Steer DL, Shah MM, Bush KT, Stuart RO, Sampogna RV, Meyer TN, Schwesinger C, Bai X, Esko JD, Nigam SK (2004) Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Dev Biol 272(2):310–327. doi: 10.1016/j.ydbio.2004.04.029 CrossRefPubMedGoogle Scholar
  76. Stiles HJ (1897) Skiagraphy after injection of the blood-vessels with mercury. J Anat Physiol 32(Pt 1):83–91PubMedPubMedCentralGoogle Scholar
  77. Sweeney D, Lindstrom N, Davies JA (2008) Developmental plasticity and regenerative capacity in the renal ureteric bud/collecting duct system. Development 135(15):2505–2510. doi: 10.1242/dev.022145 CrossRefPubMedGoogle Scholar
  78. Takasato M, Little MH (2015) The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142(11):1937–1947. doi: 10.1242/dev.104802 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406(6794):419–422. doi: 10.1038/35019088 CrossRefPubMedGoogle Scholar
  80. Varner VD, Nelson CM (2014) Cellular and physical mechanisms of branching morphogenesis. Development 141(14):2750–2759. doi: 10.1242/dev.104794 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93(20):10657–10661CrossRefGoogle Scholar
  82. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. Pattern Anal Mach Intell IEEE Trans 13(6):583–598. doi: 10.1109/34.87344 CrossRefGoogle Scholar
  83. Vivante A, Mark-Danieli M, Davidovits M, Harari-Steinberg O, Omer D, Gnatek Y, Cleper R, Landau D, Kovalski Y, Weissman I, Eisenstein I, Soudack M, Wolf HR, Issler N, Lotan D, Anikster Y, Dekel B (2013) Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling. J Am Soc Nephrol JASN 24(4):550–558. doi: 10.1681/ASN.2012010097 CrossRefPubMedGoogle Scholar
  84. Vogel MJ, van Zon P, Brueton L, Gijzen M, van Tuil MC, Cox P, Schanze D, Kariminejad A, Ghaderi-Sohi S, Blair E, Zenker M, Scambler PJ, Ploos van Amstel HK, van Haelst MM (2012) Mutations in GRIP1 cause Fraser syndrome. J Med Genet 49(5):303–306. doi: 10.1136/jmedgenet-2011-100590 CrossRefPubMedGoogle Scholar
  85. Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, Chowdhury K, Scambler PJ, Chalepakis G (2003) Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet 34(2):209–214. doi: 10.1038/ng1168 CrossRefPubMedGoogle Scholar
  86. Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P (2015) ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol 404(2):88–102. doi: 10.1016/j.ydbio.2015.05.023 CrossRefPubMedGoogle Scholar
  87. Watanabe T, Costantini F (2004) Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 271(1):98–108. doi: 10.1016/j.ydbio.2004.03.025 CrossRefPubMedGoogle Scholar
  88. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knuppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol JASN 19(5):891–903. doi: 10.1681/ASN.2006111282 CrossRefPubMedGoogle Scholar
  89. Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16(11):1423–1432. doi: 10.1101/gad.993302 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C, Group ES (2005) Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet 48(2):131–144. doi: 10.1016/j.ejmg.2005.02.003 CrossRefPubMedGoogle Scholar
  91. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol JASN 18(6):1688–1696. doi: 10.1681/ASN.2007010015 CrossRefPubMedGoogle Scholar
  92. Wörz S, Godinez WJ, Rohr K (2009) Probabilistic tracking and model-based segmentation of 3D tubular structures. In: Meinzer H-P et al (eds) Bildverarbeitung für die Medizin 2009: Algorithmen—Systeme—Anwendungen Proceedings des Workshops vom 22. bis 25. März 2009 in Heidelberg. Springer, Berlin, Heidelberg, pp 41–45CrossRefGoogle Scholar
  93. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23(1):113–117. doi: 10.1038/12722 CrossRefPubMedGoogle Scholar
  94. Zent R, Bush KT, Pohl ML, Quaranta V, Koshikawa N, Wang Z, Kreidberg JA, Sakurai H, Stuart RO, Nigam SK (2001) Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development. Dev Biol 238(2):289–302. doi: 10.1006/dbio.2001.0391 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
  2. 2.Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonAustralia

Personalised recommendations