Advertisement

Tissue-Specific Functions of p53 During Kidney Development

  • Zubaida Saifudeen
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

p53 is best identified as a tumor suppressor for its transcriptional control of genes involved in cell cycle progression and apoptosis. Beyond its irrefutable involvement in restraining unchecked cell proliferation, research over the past several years has indicated a requirement for p53 function in sustaining normal development. Here I summarize the role of p53 in embryonic development, with a focus on knowledge gained from p53 loss and overexpression during kidney development. In contrast to its classical role in suppressing proliferative pathways, p53 positively regulates nephron progenitor cell (NPC) renewal. Emerging evidence suggests p53 may control cell fate decisions by preserving energy metabolism homeostasis of progenitors in the nephrogenic niche. Maintaining a critical level of p53 function appears to be a prerequisite for optimal nephron endowment. Defining the molecular networks targeted by p53 in the NPC may well provide new targets not only for regenerative medicine but also for cancer treatment.

Notes

Acknowledgements

The author thanks Dr. Samir El-Dahr for helpful discussions and suggestions and Dr. Yuwen Li for help with the figures and acknowledges funding support from the NIDDK (R56DK104779) and the Tulane Hypertension and Renal Center of Excellence.

References

  1. Aboudehen K, Hilliard S, Saifudeen Z, El-Dahr SS (2012) Mechanisms of p53 activation and physiological relevance in the developing kidney. Am J Physiol Renal Physiol 302(8):F928–F940. doi: 10.1152/ajprenal.00642.2011 (PubMed PMID: 22237799; PMCID: PMC3330719)CrossRefPubMedPubMedCentralGoogle Scholar
  2. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117(6):735–748. doi: 10.1016/j.cell.2004.05.009 CrossRefPubMedGoogle Scholar
  3. Ansell R, Granath K, Hohmann S, Thevelein JM, Adler L (1997) The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16(9):2179–2187. doi: 10.1093/emboj/16.9.2179 (PubMed PMID: 9171333; PMCID: 1169820)CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ansieau S, Bastid J, Doreau A, Morel A-P, Bouchet BP, Thomas C, Fauvet F, Puisieux I, Doglioni C, Piccinin S, Maestro R, Voeltzel T, Selmi A, Valsesia-Wittmann S, Caron de Fromentel C, Puisieux A (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14(1):79–89. doi: 10.1016/j.ccr.2008.06.005 CrossRefPubMedGoogle Scholar
  5. Balaburski GM, Hontz RD, Murphy ME (2010) p53 and ARF: unexpected players in autophagy. Trends Cell Biol 20(6):363–369. doi: 10.1016/j.tcb.2010.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschke P, Salomon R, Antignac C, Ornitz DM, Kopan R (2012) FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 22(6):1191–1207. doi: 10.1016/j.devcel.2012.04.018 (PubMed PMID: 22698282; PMCID: 3376351)CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baraz L, Haupt Y, Elkin M, Peretz T, Vlodavsky I (2006) Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25(28):3939–3947CrossRefGoogle Scholar
  8. Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M (2014) Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 141(5):1047–1058. doi: 10.1242/dev.095851 (PubMed PMID: 24550112; PMCID: 3929412)CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120. doi: 10.1016/j.cell.2006.05.036 CrossRefPubMedGoogle Scholar
  10. Bondar T, Medzhitov R (2010) p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6(4):309–322. doi: 10.1016/j.stem.2010.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bouska A, Eischen CM (2009) Mdm2 affects genome stability independent of p53. Cancer Res 69(5):1697–1701. doi: 10.1158/0008-5472.can-08-3732 CrossRefPubMedGoogle Scholar
  12. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313(1):234–245. doi: 10.1016/j.ydbio.2007.10.014 (PubMed PMID: 18061157; PMCID: PMC2699557)CrossRefPubMedGoogle Scholar
  13. Brady CA, Attardi LD (2010) p53 at a glance. J Cell Sci 123(Pt 15):2527–2532. doi: 10.1242/jcs.064501 (PubMed PMID: 20940128; PMCID: PMC2912460)CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brooks CL, Gu W (2006) p53 ubiquitination: Mdm2 and beyond. Mol Cell 21(3):307–315. doi: 10.1016/j.molcel.2006.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brown GK, Otero LJ, LeGris M, Brown RM (1994) Pyruvate dehydrogenase deficiency. J Med Genet 31(11):875–879 (PubMed PMID: 7853374; PMCID: 1016663)CrossRefGoogle Scholar
  16. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292. doi: 10.1016/j.devcel.2005.05.016 (PubMed PMID: 16054034)CrossRefPubMedGoogle Scholar
  17. Chau BN, Diaz RL, Saunders MA, Cheng C, Chang AN, Warrener P, Bradshaw J, Linsley PS, Cleary MA (2009) Identification of SULF2 as a novel transcriptional target of p53 by use of integrated genomic analyses. Cancer Res 69(4):1368–1374. doi: 10.1158/0008-5472.CAN-08-2742 (PubMed PMID: 19190338)CrossRefPubMedGoogle Scholar
  18. Chen S, El-Dahr SS (2013) Histone deacetylases in kidney development: implications for disease and therapy. Pediatr Nephrol 28(5):689–698. doi: 10.1007/s00467-012-2223-8 (PubMed PMID: 22722820)CrossRefPubMedGoogle Scholar
  19. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138(6):1083–1095. doi: 10.1016/j.cell.2009.06.048 CrossRefPubMedGoogle Scholar
  20. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-β gene responses by cooperating with smads. Cell 113(3):301–314. doi: 10.1016/S0092-8674(03)00308-8 CrossRefPubMedGoogle Scholar
  21. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-ß and Ras/MAPK signaling through p53 phosphorylation. Science 315(5813):840–843. doi: 10.1126/science.1135961 CrossRefPubMedGoogle Scholar
  22. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18(5):698–712. doi: 10.1016/j.devcel.2010.04.008 (PubMed PMID: 20493806; PMCID: PMC2883254)CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178. doi: 10.1242/dmm.004077 (PubMed PMID: PMC3046088)CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dai C, Gu W (2010) p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16(11):528–536. doi: 10.1016/j.molmed.2010.09.002 (PubMed PMID: 20932800; PMCID: PMC2978905)CrossRefPubMedPubMedCentralGoogle Scholar
  25. Danilova N, Sakamoto KM, Lin S (2008) p53 family in development. Mech Dev 125(11–12):919–931. doi: 10.1016/j.mod.2008.09.003 CrossRefPubMedGoogle Scholar
  26. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation. Nat Cell Biol 15(9):1035–1044. doi: 10.1038/ncb2828 (PubMed PMID: PMC3891676)CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dey DC, Bronson RP, Dahl J, Carroll JP, Benjamin TL (2000) Accelerated development of polyoma tumors and embryonic lethality: different effects of p53 loss on related mouse backgrounds. Cell Growth Differ 11(5):231–237PubMedGoogle Scholar
  28. Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7(5):269–278. doi: 10.1006/scbi.1996.0035 (PubMed PMID: 9110404)CrossRefPubMedGoogle Scholar
  29. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221. doi: 10.1038/356215a0 (PubMed PMID: 1552940)CrossRefPubMedGoogle Scholar
  30. El-Dahr SS, Aboudehen K, Saifudeen Z (2008) Transcriptional control of terminal nephron differentiation. Am J Physiol Renal Physiol 294(6):F1273–F1278. doi: 10.1152/ajprenal.00562.2007 (PubMed PMID: 18287399; PMCID: PMC2606293)CrossRefPubMedPubMedCentralGoogle Scholar
  31. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1(1):45–49. doi: 10.1038/ng0492-45 (PubMed PMID: 1301998)CrossRefPubMedGoogle Scholar
  32. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825. doi: 10.1016/0092-8674(93)90500-P CrossRefPubMedGoogle Scholar
  33. Erster S, Moll UM (2005) Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 331(3):843–850. doi: 10.1016/j.bbrc.2005.03.187 (PubMed PMID: 15865940)CrossRefPubMedGoogle Scholar
  34. Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L (2014) FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141(1):17–27. doi: 10.1242/dev.089078 (PubMed PMID: 24284212; PMCID: 3865747)CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gadea G, de Toledo M, Anguille C, Roux P. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol. 2007;178(1):23-30. PubMed PMID: 17606864.CrossRefGoogle Scholar
  36. Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332(2):273–286. doi: 10.1016/j.ydbio.2009.05.578 (PubMed PMID: 19501082)CrossRefPubMedGoogle Scholar
  37. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12(19):2973–2983. doi: 10.1101/gad.12.19.2973 CrossRefPubMedGoogle Scholar
  38. Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2(4):a001040. doi: 10.1101/cshperspect.a001040 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M (1997) Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 16(6):1381–1390. doi: 10.1093/emboj/16.6.1381 (PubMed PMID: 9135153; PMCID: PMC1169735)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grossi E, Sánchez Y, Huarte M (2016) Expanding the p53 regulatory network: LncRNAs take up the challenge. Biochim Biophys Acta 1859(1):200–208. doi: 10.1016/j.bbagrm.2015.07.011 CrossRefPubMedGoogle Scholar
  41. Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S (2013) RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis. doi: 10.1093/carcin/bgt315 CrossRefPubMedGoogle Scholar
  42. Hewitt KN, Walker EA, Stewart PM (2005) Minireview: hexose-6-phosphate dehydrogenase and redox control of 11β-hydroxysteroid dehydrogenase type 1 activity. Endocrinology 146(6):2539–2543. doi: 10.1210/en.2005-0117 (PubMed PMID: 15774558)CrossRefPubMedGoogle Scholar
  43. Hickman ES, Helin K (2000) The p53 tumour suppressor protein. Biotechnol Genet Eng Rev 17:179–211 (PubMed PMID: 11255666)CrossRefGoogle Scholar
  44. Hilliard S, Aboudehen K, Yao X, El-Dahr SS (2011) Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Dev Biol 353(2):354–366. doi: 10.1016/j.ydbio.2011.03.017 (PubMed PMID: 21420949; PMCID: 3086838)CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hilliard SA, Yao X, El-Dahr SS (2014) Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol 387(1):1–14. doi: 10.1016/j.ydbio.2014.01.009 (PubMed PMID: 24440154; PMCID: 3951515)CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hirsch DS, Pirone DM, Burbelo PD (2001) A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. J Biol Chem 276(2):875–883. doi: 10.1074/jbc.M007039200 CrossRefPubMedGoogle Scholar
  47. Ho WC, Fitzgerald MX, Marmorstein R (2006) Structure of the p53 core domain dimer bound to DNA. J Biol Chem 281(29):20494–20502. doi: 10.1074/jbc.M603634200 CrossRefPubMedGoogle Scholar
  48. Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, Hartwig S, Kreidberg JA (2011) The pro-apoptotic protein Bim is a MicroRNA target in kidney progenitors. J Am Soc Nephrol 22(6):1053–1063. doi: 10.1681/ASN.2010080841 (PubMed PMID: PMC3103725)CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hwang C-I, Matoso A, Corney DC, Flesken-Nikitin A, Körner S, Wang W, Boccaccio C, Thorgeirsson SS, Comoglio PM, Hermeking H, Nikitin AY (2011) Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci 108(34):14240–14245. doi: 10.1073/pnas.1017536108 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Islam MM, Suzuki H, Yoneda M, Tanaka M (1997) Primary structure of the smallest (6.4-kDa) subunit of human and bovine ubiquinol-cytochrome c reductase deduced from cDNA sequences. Biochem Mol Biol Int 41(6):1109–1116 (PubMed PMID: 9161705)PubMedGoogle Scholar
  51. Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F, Reinberg D, Barlev NA (2007) Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 27(19):6756–6769. doi: 10.1128/mcb.00460-07 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 1(14):993–1000PubMedGoogle Scholar
  53. Jansson M, Durant ST, Cho E-C, Sheahan S, Edelmann M, Kessler B, La Thangue NB (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10(12):1431–1439 (http://www.nature.com/ncb/journal/v10/n12/suppinfo/ncb1802_S1.html)CrossRefGoogle Scholar
  54. Jenkins LMM, Durell SR, Mazur SJ, Appella E (2012) p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis 33(8):1441–1449. doi: 10.1093/carcin/bgs145 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582. doi: 10.1146/annurev.biochem.77.060806.091238 (PubMed PMID: 18410249)CrossRefPubMedGoogle Scholar
  56. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, van der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498(7452):109–112. doi: 10.1038/nature12154 (PubMed PMID: 23685455)CrossRefPubMedGoogle Scholar
  57. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257. doi: 10.1242/dev.057646 (PubMed PMID: 21350016; PMCID: PMC3050658)CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71(4):587–597. doi: 10.1016/0092-8674(92)90593-2 CrossRefPubMedGoogle Scholar
  59. Khoury MP, Bourdon JC (2011) p53 isoforms: an intracellular microprocessor? Genes Cancer 2(4):453–465. doi: 10.1177/1947601911408893 (PubMed PMID: 21779513; PMCID: PMC3135639)CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kloosterhof NK, Bralten LBC, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91. doi: 10.1016/S1470-2045(10)70053-X CrossRefPubMedGoogle Scholar
  61. Knights CD, Catania J, Giovanni SD, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173(4):533–544. doi: 10.1083/jcb.200512059 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181. doi: 10.1016/j.stem.2008.05.020 (PubMed PMID: 18682239; PMCID: PMC2561900)CrossRefPubMedPubMedCentralGoogle Scholar
  63. Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV (1997) Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16(6):1391–1400. doi: 10.1093/emboj/16.6.1391 (PubMed PMID: 9135154; PMCID: PMC1169736)CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kruse J-P, Gu W (2008) SnapShot: p53 posttranslational modifications. Cell 133(5):930–9e1. doi: 10.1016/j.cell.2008.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kruse J-P, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. doi: 10.1016/j.cell.2009.04.050 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lavelin I, Geiger B (2005) Characterization of a novel GTPase-activating protein associated with focal adhesions and the actin cytoskeleton. J Biol Chem 280(8):7178–7185. doi: 10.1074/jbc.M411990200 CrossRefPubMedGoogle Scholar
  67. Lebedeva MA, Eaton JS, Shadel GS (2009) Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta 1787(5):328–334. doi: 10.1016/j.bbabio.2009.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci USA 107(1):69–74. doi: 10.1073/pnas.0909734107 (PubMed PMID: 20018659; PMCID: PMC2806696)CrossRefPubMedGoogle Scholar
  69. Li FP, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RW (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48(18):5358–5362PubMedGoogle Scholar
  70. Li Y, Park JS, Deng JH, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38(5–6):283–291. doi: 10.1007/s10863-006-9052-z (PubMed PMID: 17091399; PMCID: 1885940)CrossRefPubMedPubMedCentralGoogle Scholar
  71. Li M, He Y, Dubois W, Wu X, Shi J, Huang J (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46(1):30–42. doi: 10.1016/j.molcel.2012.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Li Y, Liu J, McLaughlin N, Bachvarov D, Saifudeen Z, El-Dahr SS (2013) Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney. Physiol Genomics 45(20):948–964. doi: 10.1152/physiolgenomics.00113.2013 (PubMed PMID: 24003036; PMCID: 3798767)CrossRefPubMedPubMedCentralGoogle Scholar
  73. Li Y, Liu J, Li W, Brown A, Baddoo M, Li M, Carroll T, Oxburgh L, Feng Y, Saifudeen Z (2015) p53 Enables metabolic fitness and self-renewal of nephron progenitor cells. Development 142(7):1228–1241. doi: 10.1242/dev.111617 (PubMed PMID: 25804735; PMCID: PMC4378244)CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lindstrom NO, Lawrence ML, Burn SF, Johansson JA, Bakker ER, Ridgway RA, Chang CH, Karolak MJ, Oxburgh L, Headon DJ, Sansom OJ, Smits R, Davies JA, Hohenstein P (2014) Integrated beta-catenin, BMP, PTEN, and Notch signalling patterns the nephron. Elife 3:e04000. doi: 10.7554/eLife.04000 (PubMed PMID: 25647637; PMCID: PMC4337611)CrossRefGoogle Scholar
  75. Little MH, McMahon AP (2012) Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol 4(5):a008300. doi: 10.1101/cshperspect.a008300 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liu M, Dhanwada KR, Birt DF, Hecht S, Pelling JC (1994) Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15(6):1089–1092 (PubMed PMID: 8020138)CrossRefGoogle Scholar
  77. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer SD (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4(1):37–48. doi: 10.1016/j.stem.2008.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Loughery JDM (2013) Switching on p53: an essential role for protein phosphorylation? BioDiscovery 8:1–20. doi: 10.7750/BioDiscovery.2013.8.1 CrossRefGoogle Scholar
  79. Maddocks ODK, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89(3):237–245. doi: 10.1007/s00109-011-0735-5 (PubMed PMID: PMC3043245)CrossRefPubMedPubMedCentralGoogle Scholar
  80. Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653. doi: 10.1126/science.1126863 CrossRefPubMedGoogle Scholar
  81. Mayr JA, Havlíčková V, Zimmermann F, Magler I, Kaplanová V, Ješina P, Pecinová A, Nůsková H, Koch J, Sperl W, Houštěk J (2010) Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 ε subunit. Hum Mol Genet 19(17):3430–3439. doi: 10.1093/hmg/ddq254 CrossRefPubMedGoogle Scholar
  82. McLaughlin N, Yao X, Li Y, Saifudeen Z, El-Dahr SS (2013) Histone signature of metanephric mesenchyme cell lines. Epigenetics 8(9):970–978. doi: 10.4161/epi.25753 (PubMed PMID: 23867747; PMCID: PMC3883774)CrossRefPubMedPubMedCentralGoogle Scholar
  83. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950. doi: 10.1101/cshperspect.a000950 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Meletis K, Wirta V, Hede S-M, Nistér M, Lundeberg J, Frisén J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369. doi: 10.1242/dev.02208 CrossRefPubMedGoogle Scholar
  85. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737 (http://www.nature.com/nrc/journal/v9/n10/suppinfo/nrc2730_S1.html)CrossRefGoogle Scholar
  86. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590. doi: 10.1016/S1097-2765(03)00050-9 CrossRefPubMedGoogle Scholar
  87. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F, Lechman E, Hermans KG, Eppert K, Konovalova Z, Ornatsky O, Domany E, Meyn MS, Dick JE (2010) A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7(2):186–197. doi: 10.1016/j.stem.2010.05.016 (PubMed PMID: 20619763)CrossRefPubMedGoogle Scholar
  88. Miyazaki Y, Oshima K, Fogo A, Hogan BLM, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105(7):863–873. doi: 10.1172/JCI8256 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R (2010) p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis 31(9):1501–1508. doi: 10.1093/carcin/bgq101 CrossRefPubMedGoogle Scholar
  90. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008PubMedGoogle Scholar
  91. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17(6):631–636. doi: 10.1016/j.ceb.2005.09.007 CrossRefPubMedGoogle Scholar
  92. Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378(6553):203–206CrossRefGoogle Scholar
  93. Muller Patricia AJ, Vousden KH (2014) Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3):304–317. doi: 10.1016/j.ccr.2014.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Muthukrishnan SD, Yang X, Friesel R, Oxburgh L (2015) Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun 6:10027. doi: 10.1038/ncomms10027 (PubMed PMID: 26634297; PMCID: PMC4686668)CrossRefPubMedPubMedCentralGoogle Scholar
  95. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008. doi: 10.1101/cshperspect.a001008 (PubMed PMID: PMC2827900)CrossRefPubMedPubMedCentralGoogle Scholar
  96. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2(1):1–8 (PubMed PMID: 14757840)PubMedGoogle Scholar
  97. Ou X, O’Leary HA, Broxmeyer HE (2013) Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood 122(2):161–169. doi: 10.1182/blood-2013-02-487470 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Park JY, Wang PY, Matsumoto T, Sung HJ, Ma W, Choi JW, Anderson SA, Leary SC, Balaban RS, Kang JG, Hwang PM (2009) p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res 105(7):705–712. doi: 10.1161/CIRCRESAHA.109.205310 (11 p following 12, PubMed PMID: 19696408; PMCID: PMC2761626)CrossRefPubMedPubMedCentralGoogle Scholar
  99. Park J-H, Zhuang J, Li J, Hwang PM (2016) p53 as guardian of the mitochondrial genome. FEBS Lett. doi: 10.1002/1873-3468.12061.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Park S-Y, Choi H-K, Choi Y, Kwak S, Choi K-C, Yoon H-G (2015) Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress. Cancer Lett 357:419–427.CrossRefGoogle Scholar
  101. Puzio-Kuter AM (2011) The role of p53 in metabolic regulation. Genes Cancer 2(4):385–391. doi: 10.1177/1947601911409738 (PubMed PMID: PMC3135642)CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ray K, Kunsch C, Bonner LM, Robishaw JD (1995) Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated the γ4, γ10, and γ11 subunits. J Biol Chem 270(37):21765–21771CrossRefGoogle Scholar
  103. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10(2):175–180. doi: 10.1038/ng0695-175 (PubMed PMID: 7663512)CrossRefPubMedGoogle Scholar
  104. Saifudeen Z, Dipp S, El-Dahr SS (2002) A role for p53 in terminal epithelial cell differentiation. J Clin Invest 109(8):1021–1030. doi: 10.1172/JCI13972 (PubMed PMID: 11956239; PMCID: PMC150944)CrossRefPubMedPubMedCentralGoogle Scholar
  105. Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS (2009) p53 regulates metanephric development. J Am Soc Nephrol 20(11):2328–2337. doi: 10.1681/ASN.2008121224 (PubMed PMID: 19729440; PMCID: 2799183)CrossRefPubMedPubMedCentralGoogle Scholar
  106. Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS (2012) A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 7(9):e44869. doi: 10.1371/journal.pone.0044869 (PubMed PMID: 22984579; PMCID: 3440354)CrossRefPubMedPubMedCentralGoogle Scholar
  107. Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113(3):857–865 (PubMed PMID: 1821855)PubMedGoogle Scholar
  108. Schmidt D, Müller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci 99(5):2872–2877. doi: 10.1073/pnas.052559499 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schoppy DW, Ruzankina Y, Brown EJ (2010) Removing all obstacles: a critical role for p53 in promoting tissue renewal. Cell Cycle 9(7):1313–1319 (PMCID: PMC2980577)CrossRefGoogle Scholar
  110. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25(21):5214–5228. doi: 10.1038/sj.emboj.7601381 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK (2011) Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 356(1):19–27. doi: 10.1016/j.ydbio.2011.05.004 (PubMed PMID: 21600196; PMCID: PMC3130836)CrossRefPubMedPubMedCentralGoogle Scholar
  112. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168(6):941–953. doi: 10.1083/jcb.200411179 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Sola-Penna M, Da Silva D, Coelho WS, Marinho-Carvalho MM, Zancan P (2010) Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. IUBMB Life 62(11):791–796. doi: 10.1002/iub.393 CrossRefPubMedGoogle Scholar
  114. Sun KLW, Correia JP, Kennedy TE (2011) Netrins: versatile extracellular cues with diverse functions. Development 138(11):2153–2169. doi: 10.1242/dev.044529 CrossRefGoogle Scholar
  115. Tang X, Milyavsky M, Shats I, Erez N, Goldfinger N, Rotter V (2004) Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23(34):5759–5769CrossRefGoogle Scholar
  116. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839. doi: 10.1016/j.molcel.2006.11.021 CrossRefPubMedGoogle Scholar
  117. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10(6):676–687 (http://www.nature.com/ncb/journal/v10/n6/suppinfo/ncb1730_S1.html)CrossRefGoogle Scholar
  118. Vaseva AV, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787(5):414–420. doi: 10.1016/j.bbabio.2008.10.005 CrossRefPubMedGoogle Scholar
  119. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. doi: 10.1038/nrm2147 (PubMed PMID: 17380161)CrossRefPubMedGoogle Scholar
  120. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431. doi: 10.1016/j.cell.2009.04.037 CrossRefPubMedGoogle Scholar
  121. Wallingford JB, Seufert DW, Virta VC, Vize PD (1997) P53 activity is essential for normal development in Xenopus. Curr Biol 7(10):747–757. doi: 10.1016/S0960-9822(06)00333-2 CrossRefPubMedGoogle Scholar
  122. Wang P-Y, Ma W, Park J-Y, Celi FS, Arena R, Choi JW, Ali QA, Tripodi DJ, Zhuang J, Lago CU, Strong LC, Talagala SL, Balaban RS, Kang J-G, Hwang PM (2013) Increased oxidative metabolism in the Li–Fraumeni syndrome. N Engl J Med 368(11):1027–1032. doi: 10.1056/NEJMoa1214091 (PubMed PMID: 23484829)CrossRefPubMedPubMedCentralGoogle Scholar
  123. Wang DB, Kinoshita C, Kinoshita Y, Morrison RS (2014) p53 and mitochondrial function in neurons. Biochim Biophys 1842(8):1186–1197. doi: 10.1016/j.bbadis.2013.12.015 CrossRefGoogle Scholar
  124. Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen Steven A, Moll Ute M, Zhang X, Dobbelstein M (2016) MDM2 associates with polycomb repressor complex 2 and enhances stemness-promoting chromatin modifications independent of p53. Mol Cell 61(1):68–83. doi: 10.1016/j.molcel.2015.12.008 CrossRefPubMedGoogle Scholar
  125. Xavier JM, Morgado AL, Sola S, Rodrigues CM (2014) Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 21(7):1009–1024. doi: 10.1089/ars.2013.5417 (PubMed PMID: 24329038; PMCID: PMC4123470)CrossRefPubMedPubMedCentralGoogle Scholar
  126. Xu Y (2005) A new role of p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle 4(3):363–364CrossRefGoogle Scholar
  127. Yañez AJ, Ludwig HC, Bertinat R, Spichiger C, Gatica R, Berlien G, Leon O, Brito M, Concha II, Slebe JC (2005) Different involvement for aldolase isoenzymes in kidney glucose metabolism: aldolase B but not aldolase A colocalizes and forms a complex with FBPase. J Cell Physiol 202(3):743–753. doi: 10.1002/jcp.20183 CrossRefPubMedGoogle Scholar
  128. Yu H, Thun R, Chandrasekharappa S, Trent JM, Zhang J, Meisler MH (1993) Human PCK1 encoding phosphoenolpyruvate carboxykinase is located on chromosome 20q13.2. Genomics 15(1):219–221. doi: 10.1006/geno.1993.1040 CrossRefPubMedGoogle Scholar
  129. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16(5):369–377. doi: 10.1016/j.ccr.2009.09.024 (PubMed PMID: 19878869; PMCID: PMC4369769)CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zhang X-D, Qin Z-H, Wang J (2010) The role of p53 in cell metabolism. Acta Pharmacol Sin 31(9):1208–1212CrossRefGoogle Scholar
  131. Zielinska AE, Walker EA, Stewart PM, Lavery GG (2011) Biochemistry and physiology of hexose-6-phosphate knockout mice. Mol Cell Endocrinol 336(1-2):213–218. doi: 10.1016/j.mce.2010.12.004 (PubMed PMID: 21146583)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Pediatrics, Section of Pediatric NephrologyTulane University School of MedicineNew OrleansUSA

Personalised recommendations