Genetic Syndromes Affecting Kidney Development

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

Renal anomalies are common birth defects that may manifest as a wide spectrum of anomalies from hydronephrosis (dilation of the renal pelvis and calyces) to renal aplasia (complete absence of the kidney(s)). Aneuploidies and mosaicisms are the most common syndromes associated with CAKUT. Syndromes with single gene and renal developmental defects are less common but have facilitated insight into the mechanism of renal and other organ development. Analysis of underlying genetic mutations with transgenic and mutant mice has also led to advances in our understanding of mechanisms of renal development.

References

  1. Aguinaga M, Zenteno JC, Perez-Cano H, Moran V (2010) Sonic hedgehog mutation analysis in patients with VACTERL association. Am J Med Genet Part A 152a:781–783. doi: 10.1002/ajmg.a.33293 CrossRefPubMedGoogle Scholar
  2. Altug-Teber O et al (2007) Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res 119:171–184. doi: 10.1159/000112058 CrossRefPubMedGoogle Scholar
  3. Basson MA et al (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477. doi: 10.1016/j.ydbio.2006.08.051 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M (2014) Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 141:1047–1058. doi: 10.1242/dev.095851 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bates CM (2011) Role of fibroblast growth factor receptor signaling in kidney development. Am J Physiol Renal Physiol 301:F245–F251. doi: 10.1152/ajprenal.00186.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernard P, Harley VR (2007) Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 39:31–43. doi: 10.1016/j.biocel.2006.06.007 CrossRefPubMedGoogle Scholar
  7. Bernard P, Sim H, Knower K, Vilain E, Harley V (2008) Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol 40:2889–2900. doi: 10.1016/j.biocel.2008.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Berthon A, Martinez A, Bertherat J, Val P (2012) Wnt/beta-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 351:87–95. doi: 10.1016/j.mce.2011.09.009 CrossRefPubMedGoogle Scholar
  9. Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ (2004) A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46,XX woman. N Engl J Med 351:792–798. doi: 10.1056/NEJMoa040533 CrossRefPubMedGoogle Scholar
  10. Biason-Lauber A et al (2007) WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum Reprod 22:224–229. doi: 10.1093/humrep/del360 CrossRefPubMedGoogle Scholar
  11. Bingham C et al (2001) Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 68:219–224. doi: 10.1086/316945 CrossRefPubMedGoogle Scholar
  12. Blake J, Rosenblum ND (2014) Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 36:2–12. doi: 10.1016/j.semcdb.2014.07.011 CrossRefPubMedGoogle Scholar
  13. Bonnet CS et al (2009) Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 18:2166–2176. doi: 10.1093/hmg/ddp149 CrossRefPubMedGoogle Scholar
  14. Botto LD et al (1997) The spectrum of congenital anomalies of the VATER association: an international study. Am J Med Genet 71:8–15CrossRefGoogle Scholar
  15. Bridgewater D et al (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94. doi: 10.1016/j.ydbio.2008.02.010 CrossRefGoogle Scholar
  16. Brook-Carter PT et al (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—a contiguous gene syndrome. Nat Genet 8:328–332. doi: 10.1038/ng1294-328 CrossRefPubMedGoogle Scholar
  17. Brosens E et al (2013) VACTERL association etiology: the impact of de novo and rare copy number variations. Mol Syndromol 4:20–26. doi: 10.1159/000345577 CrossRefPubMedGoogle Scholar
  18. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292. doi: 10.1016/j.devcel.2005.05.016 CrossRefGoogle Scholar
  19. Caruana G et al (2015) Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 30:487–495. doi: 10.1007/s00467-014-2962-9 CrossRefPubMedGoogle Scholar
  20. Chassot AA et al (2011) RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS One 6. doi: 10.1371/journal.pone.0025641 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chatterjee R et al (2012) Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 131:1725–1738. doi: 10.1007/s00439-012-1181-3 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen L, Deng CX (2005) Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci J Virtual Libr 10:1961–1976CrossRefGoogle Scholar
  23. Chen R, Amoui M, Zhang Z, Mardon G (1997) Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91:893–903CrossRefGoogle Scholar
  24. Cheng HT et al (2003) Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130:5031–5042. doi: 10.1242/dev.00697 CrossRefPubMedGoogle Scholar
  25. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C (2014) HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nat Rev Nephrol 11:102–112. doi: 10.1038/nrneph.2014.232 CrossRefPubMedGoogle Scholar
  26. Costantini F (2010) GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis 6:252–262. doi: 10.4161/org.6.4.12680 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127. doi: 10.1002/bies.20357 CrossRefPubMedGoogle Scholar
  28. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356. doi: 10.1056/NEJMra055323 CrossRefPubMedGoogle Scholar
  29. Dibble CC et al (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47:535–546. doi: 10.1016/j.molcel.2012.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  30. DiMario FJ, Sahin M, Ebrahimi-Fakhari D (2015) Tuberous sclerosis complex. Pediatr Clin N Am 62:633–648. doi: 10.1016/j.pcl.2015.03.005 CrossRefGoogle Scholar
  31. Dixon BP, Hulbert JC, Bissler JJ (2011) Tuberous sclerosis complex renal disease. Nephron Exp Nephrol 118:e15–e20. doi: 10.1159/000320891 CrossRefPubMedGoogle Scholar
  32. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90. doi: 10.1136/jmg.2005.032854 CrossRefPubMedGoogle Scholar
  33. Gillick J, Mooney E, Giles S, Bannigan J, Puri P (2003) Notochord anomalies in the adriamycin rat model: a morphologic and molecular basis for the VACTERL association. J Pediatr Surg 38, 469–473; discussion 469–473. doi: 10.1053/jpsu.2003.50081 CrossRefPubMedGoogle Scholar
  34. Gresh L et al (2004) A transcriptional network in polycystic kidney disease. EMBO J 23:1657–1668. doi: 10.1038/sj.emboj.7600160 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Guo Q et al (2015) Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol JASN 26:149–159. doi: 10.1681/asn.2013070764 CrossRefPubMedGoogle Scholar
  36. Hains DS et al (2010) High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 183:2077–2084. doi: 10.1016/j.juro.2009.12.095 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Handrigan GR et al (2013) Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation. J Med Genet 50:163–173. doi: 10.1136/jmedgenet-2012-101288 CrossRefPubMedGoogle Scholar
  38. Harrison SJ, Nishinakamura R, Monaghan AP (2008) Sall1 regulates mitral cell development and olfactory nerve extension in the developing olfactory bulb. Cereb Cortex (New York, N.Y.: 1991) 18:1604–1617. doi: 10.1093/cercor/bhm191 CrossRefGoogle Scholar
  39. Hartman TR et al (2009) The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet 18:151–163. doi: 10.1093/hmg/ddn325 CrossRefPubMedGoogle Scholar
  40. Heidet L et al (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol CJASN 5:1079–1090. doi: 10.2215/cjn.06810909 CrossRefPubMedGoogle Scholar
  41. Hilger A et al (2013) De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with VATER/VACTERL association. Eur J Hum Genet EJHG 21:1377–1382. doi: 10.1038/ejhg.2013.58 CrossRefPubMedGoogle Scholar
  42. Hill P, Wang B, Ruther U (2007) The molecular basis of Pallister Hall associated polydactyly. Hum Mol Genet 16:2089–2096. doi: 10.1093/hmg/ddm156 CrossRefPubMedGoogle Scholar
  43. Hines EA et al (2016) Syndactyly in a novel Fras1(rdf) mutant results from interruption of signals for interdigital apoptosis. Dev Dyn Off Publ Am Assoc Anat 245:497–507. doi: 10.1002/dvdy.24389 CrossRefGoogle Scholar
  44. Hofmann AD, Duess JW, Puri P (2014) Congenital anomalies of the kidney and urinary tract (CAKUT) associated with Hirschsprung’s disease: a systematic review. Pediatr Surg Int 30:757–761. doi: 10.1007/s00383-014-3529-3 CrossRefPubMedGoogle Scholar
  45. Horikawa Y et al (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385. doi: 10.1038/ng1297-384 CrossRefPubMedGoogle Scholar
  46. Hoskins BE et al (2007) Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet 80:800–804. doi: 10.1086/513322 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hwang DY et al (2014) Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int 85:1429–1433. doi: 10.1038/ki.2013.508 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Iglesias DM et al (2007) Canonical WNT signaling during kidney development. Am J Physiol Renal Physiol 293:F494–F500. doi: 10.1152/ajprenal.00416.2006 CrossRefPubMedGoogle Scholar
  49. Inoki K, Li Y, Zhu T, Wu J, Guan K-L (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657. doi: 10.1038/ncb839 CrossRefPubMedGoogle Scholar
  50. Iwasaki N et al (1998) Liver and kidney function in Japanese patients with maturity-onset diabetes of the young. Diabetes Care 21:2144–2148CrossRefGoogle Scholar
  51. Jeanpierre C et al (2011) RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet 48:497–504. doi: 10.1136/jmg.2010.088526 CrossRefPubMedGoogle Scholar
  52. Kakkar N, Menon S, Radotra BD (2006) Histomorphology of renal dysplasia—an autopsy study. Fetal Pediatr Pathol 25:73–86. doi: 10.1080/15513810600788764 CrossRefPubMedGoogle Scholar
  53. Kamath BM, Spinner NB, Rosenblum ND (2013) Renal involvement and the role of Notch signalling in Alagille syndrome. Nat Rev Nephrol 9:409–418. doi: 10.1038/nrneph.2013.102 CrossRefPubMedGoogle Scholar
  54. Kamath BM et al (2012) Renal anomalies in Alagille syndrome: a disease-defining feature. Am J Med Genet A 158A:85–89. doi: 10.1002/ajmg.a.34369 CrossRefPubMedGoogle Scholar
  55. Kanda S et al (2014) Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol JASN 25:2584–2595. doi: 10.1681/asn.2013080896 CrossRefPubMedGoogle Scholar
  56. Kiefer SM et al (2003) Expression of a truncated Sall1 transcriptional repressor is responsible for Townes–Brocks syndrome birth defects. Hum Mol Genet 12:2221–2227. doi: 10.1093/hmg/ddg233 CrossRefPubMedGoogle Scholar
  57. Kiefer SM et al (2010) Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 137:3099–3106. doi: 10.1242/dev.037812 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kim J, Kim P, Hui CC (2001a) The VACTERL association: lessons from the Sonic hedgehog pathway. Clin Genet 59:306–315CrossRefGoogle Scholar
  59. Kim PC, Mo R, Hui CC (2001b) Murine models of VACTERL syndrome: role of sonic hedgehog signaling pathway. J Pediatr Surg 36:381–384CrossRefGoogle Scholar
  60. Kingswood JC et al (2016) Review of the tuberous sclerosis renal guidelines from the 2012 consensus conference: current data and future study. Nephron 133. doi: 10.1159/000448293 CrossRefPubMedGoogle Scholar
  61. Kohl S et al (2014) Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol JASN 25:1917–1922. doi: 10.1681/asn.2013101103 CrossRefPubMedGoogle Scholar
  62. Kohlhase J (1993) In: Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle University of Washington, SeattleGoogle Scholar
  63. Kolatsi-Joannou M et al (2001) Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol JASN 12:2175–2180PubMedGoogle Scholar
  64. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213. doi: 10.1101/cshperspect.a011213 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Krebs LT et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352PubMedPubMedCentralGoogle Scholar
  66. Krueger DA et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811. doi: 10.1056/NEJMoa1001671 CrossRefPubMedGoogle Scholar
  67. Lahiri D et al (2007) Nephropathy and defective spermatogenesis in mice transgenic for a single isoform of the Wilms’ tumour suppressor protein, WT1-KTS, together with one disrupted Wt1 allele. Mol Reprod Dev 74:300–311. doi: 10.1002/mrd.20491 CrossRefPubMedGoogle Scholar
  68. Landgraf K et al (2010) Sipl1 and Rbck1 are novel Eya1-binding proteins with a role in craniofacial development. Mol Cell Biol 30:5764–5775. doi: 10.1128/mcb.01645-09 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lefebvre J et al (2015) Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int 88:321–331. doi: 10.1038/ki.2015.140 CrossRefPubMedGoogle Scholar
  70. Li Y, Manaligod J, Weeks D (2010) EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis. Biol Cell 102:277–292. doi: 10.1042/bc20090098 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S (2010) vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development 137:347–357. doi: 10.1242/dev.042226 CrossRefPubMedGoogle Scholar
  72. Lopez-Rios J et al (2012) GLI3 constrains digit number by controlling both progenitor proliferation and BMP-dependent exit to chondrogenesis. Dev Cell 22:837–848. doi: 10.1016/j.devcel.2012.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lubinsky M (2015) The VACTERL Association as a disturbance of cell fate determination. Am J Med Genet Part A 167a:2582–2588. doi: 10.1002/ajmg.a.37238 CrossRefPubMedGoogle Scholar
  74. Madariaga L et al (2013) Severe prenatal renal anomalies associated with mutations in HNF1B or PAX2 genes. Clin J Am Soc Nephrol CJASN 8:1179–1187. doi: 10.2215/cjn.10221012 CrossRefPubMedGoogle Scholar
  75. Mandel H et al (2008) SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am J Hum Genet 82:39–47. doi: 10.1016/j.ajhg.2007.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mao Z, Chong J, Ong ACM (2016) Autosomal dominant polycystic kidney disease: recent advances in clinical management. F1000Research 5. doi: 10.12688/f1000research.9045.1 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Marie PJ, Coffin JD, Hurley MM (2005) FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem 96:888–896. doi: 10.1002/jcb.20582 CrossRefPubMedGoogle Scholar
  78. Martucciello G, Ceccherini I, Lerone M, Jasonni V (2000) Special basic science review: pathogenesis of Hirschsprung’s disease. J Pediatr Surg 35:1017–1025. doi: 10.1053/jpsu.2000.7763 CrossRefPubMedGoogle Scholar
  79. Materna-Kiryluk A et al (2014) The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1. Pediatr Nephrol 29:257–267. doi: 10.1007/s00467-013-2625-2 CrossRefPubMedGoogle Scholar
  80. McCright B (2003) Notch signaling in kidney development. Curr Opin Nephrol Hypertens 12:5–10. doi: 10.1097/01.mnh.0000049802.69874.c0 CrossRefPubMedGoogle Scholar
  81. McCright B et al (2001) Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502PubMedGoogle Scholar
  82. Mendel DB, Hansen LP, Graves MK, Conley PB, Crabtree GR (1991) HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev 5:1042–1056CrossRefGoogle Scholar
  83. Michos O et al (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809. doi: 10.1371/journal.pgen.1000809 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Morita Y et al (2016) Sall1 transiently marks undifferentiated heart precursors and regulates their fate. J Mol Cell Cardiol 92:158–162. doi: 10.1016/j.yjmcc.2016.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Morrison AA, Viney RL, Saleem MA, Ladomery MR (2008) New insights into the function of the Wilms tumor suppressor gene WT1 in podocytes. Am J Physiol Renal Physiol 295:F12–F17. doi: 10.1152/ajprenal.00597.2007 CrossRefPubMedGoogle Scholar
  86. Munger SC, Natarajan A, Looger LL, Ohler U, Capel B (2013) Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination. PLoS Genet 9. doi: 10.1371/journal.pgen.1003630 CrossRefPubMedPubMedCentralGoogle Scholar
  87. North American Pediatric Renal Trials and Collaborative Studies (2011) NAPRTCS 2011 annual dialysis report. The National Institute of Diabetes and Digestive and Kidney Diseases, pp 1–26Google Scholar
  88. Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E (2002) Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129:5151–5160PubMedGoogle Scholar
  89. Ngan ES, Kim KH, Hui CC (2013) Sonic hedgehog signaling and VACTERL association. Mol Syndromol 4:32–45. doi: 10.1159/000345725 CrossRefPubMedGoogle Scholar
  90. Nishinakamura R et al (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMedPubMedCentralGoogle Scholar
  91. Nishita M et al (2014) Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol 34:3096–3105. doi: 10.1128/mcb.00491-14 CrossRefPubMedPubMedCentralGoogle Scholar
  92. O’Brien LL et al (2016) Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 143:595–608. doi: 10.1242/dev.127175 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Park JS et al (2012) Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 23:637–651. doi: 10.1016/j.devcel.2012.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Passos-Bueno MR et al (1999) Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat 14:115–125. doi: 10.1002/(sici)1098-1004(1999)14:2<115::aid-humu3>3.0.co;2-2 CrossRefPubMedGoogle Scholar
  95. Patek CE et al (2003) Murine Denys–Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. Hum Mol Genet 12:2379–2394. doi: 10.1093/hmg/ddg240 CrossRefPubMedGoogle Scholar
  96. Pavlakis E, Chiotaki R, Chalepakis G (2011) The role of Fras1/Frem proteins in the structure and function of basement membrane. Int J Biochem Cell Biol 43:487–495. doi: 10.1016/j.biocel.2010.12.016 CrossRefPubMedGoogle Scholar
  97. Pema M et al (2016) mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat Commun 7:10786. doi: 10.1038/ncomms10786 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Pignoni F et al (1997) The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91:881–891CrossRefGoogle Scholar
  99. Pini Prato A et al (2009) Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association. Medicine 88:83–90. doi: 10.1097/MD.0b013e31819cf5da CrossRefPubMedGoogle Scholar
  100. Pitera JE, Scambler PJ, Woolf AS (2008) Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum Mol Genet 17:3953–3964. doi: 10.1093/hmg/ddn297 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Pitera JE, Woolf AS, Basson MA, Scambler PJ (2012) Sprouty1 haploinsufficiency prevents renal agenesis in a model of Fraser syndrome. J Am Soc Nephrol JASN 23:1790–1796. doi: 10.1681/asn.2012020146 CrossRefPubMedGoogle Scholar
  102. Plank TL, Yeung RS, Henske EP (1998) Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 58:4766–4770PubMedGoogle Scholar
  103. Poladia DP et al (2006) Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 291:325–339. doi: 10.1016/j.ydbio.2005.12.034 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Rakowski SK et al (2006) Renal manifestations of tuberous sclerosis complex: incidence, prognosis, and predictive factors. Kidney Int 70:1777–1782. doi: 10.1038/sj.ki.5001853 CrossRefPubMedGoogle Scholar
  105. Reidy KJ, Rosenblum ND (2009) Cell and molecular biology of kidney development. Semin Nephrol 29:321–337. doi: 10.1016/j.semnephrol.2009.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F (2016) Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol 14:e1002382. doi: 10.1371/journal.pbio.1002382 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ruf RG et al (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc Natl Acad Sci USA 101:8090–8095. doi: 10.1073/pnas.0308475101 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sadowski CE et al (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol JASN 26:1279–1289. doi: 10.1681/asn.2014050489 CrossRefPubMedGoogle Scholar
  109. Saisawat P et al (2014) Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int 85:1310–1317. doi: 10.1038/ki.2013.417 CrossRefPubMedGoogle Scholar
  110. Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336. doi: 10.1016/j.ydbio.2005.05.029 CrossRefPubMedGoogle Scholar
  111. Sanna-Cherchi S et al (2012) Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet 91:987–997. doi: 10.1016/j.ajhg.2012.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Schneider J, Arraf AA, Grinstein M, Yelin R, Schultheiss TM (2015) Wnt signaling orients the proximal-distal axis of chick kidney nephrons. Development 142:2686–2695. doi: 10.1242/dev.123968 CrossRefPubMedGoogle Scholar
  113. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122:1919–1929Google Scholar
  114. Seyedzadeh A, Kompani F, Esmailie E, Samadzadeh S, Farshchi B (2008) High-grade vesicoureteral reflux in Pfeiffer syndrome. Urol J 5:200–202PubMedGoogle Scholar
  115. Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8:65–74. doi: 10.1016/j.devcel.2004.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shillingford JM et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103:5466–5471. doi: 10.1073/pnas.0509694103 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Siroky BJ, Yin H, Bissler JJ (2011) Clinical and molecular insights into tuberous sclerosis complex renal disease. Pediatr Nephrol 26:839–852. doi: 10.1007/s00467-010-1689-5 CrossRefPubMedGoogle Scholar
  118. Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18:175–189. doi: 10.1016/j.devcel.2010.01.011 CrossRefPubMedGoogle Scholar
  119. Song R, Yosypiv IV (2011) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 26:353–364. doi: 10.1007/s00467-010-1629-4 CrossRefPubMedGoogle Scholar
  120. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683. doi: 10.1038/372679a0 CrossRefGoogle Scholar
  121. Stoll C, Dott B, Alembik Y, Roth MP (2014) Associated nonurinary congenital anomalies among infants with congenital anomalies of kidney and urinary tract (CAKUT). Eur J Med Genet 57:322–328. doi: 10.1016/j.ejmg.2014.04.014 CrossRefPubMedGoogle Scholar
  122. Stoll C, Dott B, Alembik Y, Roth MP (2015) Associated congenital anomalies among cases with Down syndrome. Eur J Med Genet 58:674–680. doi: 10.1016/j.ejmg.2015.11.003 CrossRefPubMedGoogle Scholar
  123. Su N, Jin M, Chen L (2014) Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2:14003. doi: 10.1038/boneres.2014.3 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tadjuidje E, Hegde RS (2013) The eyes absent proteins in development and disease. Cell Mol Life Sci 70:1897–1913. doi: 10.1007/s00018-012-1144-9 CrossRefPubMedGoogle Scholar
  125. Taraviras S et al (1999) Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126:2785–2797PubMedGoogle Scholar
  126. Tee AR et al (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99:13571–13576. doi: 10.1073/pnas.202476899 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Thomas R et al (2011) HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26:897–903. doi: 10.1007/s00467-011-1826-9 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci USA 98:5643–5648. doi: 10.1073/pnas.091584598 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Vainio SJ (2003) Nephrogenesis regulated by Wnt signaling. J Nephrol 16:279–285PubMedGoogle Scholar
  130. van Slegtenhorst M et al (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7:1053–1057CrossRefGoogle Scholar
  131. Verbitsky M et al (2015) Genomic imbalances in pediatric patients with chronic kidney disease. J Clin Invest 125:2171–2178. doi: 10.1172/jci80877 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Vivante A et al (2013) Renal hypodysplasia associates with a WNT4 variant that causes aberrant canonical WNT signaling. J Am Soc Nephrol JASN 24:550–558. doi: 10.1681/asn.2012010097 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Volckaert T, De Langhe SP (2015) Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. Dev Dyn Off Publ Am Assoc Anat 244:342–366. doi: 10.1002/dvdy.24234 CrossRefGoogle Scholar
  134. Warthen DM et al (2006) Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 27:436–443. doi: 10.1002/humu.20310 CrossRefPubMedGoogle Scholar
  135. Weber S et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol JASN 17:2864–2870. doi: 10.1681/asn.2006030277 CrossRefPubMedGoogle Scholar
  136. Weber S et al (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol JASN 19:891–903. doi: 10.1681/asn.2006111282 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Xi Q et al (2016) Copy number variations in multicystic dysplastic kidney: update for prenatal diagnosis and genetic counseling. Prenat Diagn. doi: 10.1002/pd.4807 CrossRefPubMedGoogle Scholar
  138. Xu PX, Cheng J, Epstein JA, Maas RL (1997) Mouse Eya genes are expressed during limb tendon development and encode a transcriptional activation function. Proc Natl Acad Sci USA 94:11974–11979CrossRefGoogle Scholar
  139. Xu PX et al (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117. doi: 10.1038/12722 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Xu J et al (2014) Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 31:434–447. doi: 10.1016/j.devcel.2014.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Xue Y et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730CrossRefGoogle Scholar
  142. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol JASN 13:2508–2516CrossRefGoogle Scholar
  143. Zeidler C et al (2014) Heterozygous FGF8 mutations in patients presenting cryptorchidism and multiple VATER/VACTERL features without limb anomalies. Birth Defects Res A Clin Mol Teratol 100:750–759. doi: 10.1002/bdra.23278 CrossRefPubMedGoogle Scholar
  144. Zhao H et al (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415. doi: 10.1016/j.ydbio.2004.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zou D, Silvius D, Rodrigo-Blomqvist S, Enerbäck S, Xu PX (2006) Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear. Dev Biol 298. doi: 10.1016/j.ydbio.2006.06.049 CrossRefPubMedGoogle Scholar
  146. Zubkov VS et al (2015) A spatially-averaged mathematical model of kidney branching morphogenesis. J Theor Biol 379:24–37. doi: 10.1016/j.jtbi.2015.04.015 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Children’s Hospital at Montefiore/Albert Einstein College of MedicineBronxUSA
  2. 2.Pediatric NephrologyChildren’s Hospital at Montefiore/Albert Einstein College of MedicineBronxUSA

Personalised recommendations