Advertisement

Atomic Scale Friction Phenomena

Chapter

Abstract

Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 25 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact. We will begin by introducing friction force microscopy, including the calibration of cantilever force sensors and special aspects of the ultrahigh vacuum environment. The empirical Prandtl-Tomlinson model often used to describe atomic stick-slip results is therefore presented in detail. We review experimental results regarding atomic friction, including thermal activation, velocity dependence and temperature dependence. The geometry of the contact is crucial to the interpretation of experimental results, such as the calculation of the lateral contact stiffness. The onset of wear on the atomic scale has recently been studied experimentally and it is described here. The chapter ends with a discussion of recent experiments aimed to detect the dissipative forces acting when a sharp tip is moved parallel and very close to a solid surface without being in contact with it, or when small entities such as single polymer chains, graphene nanoribbons or large organic molecules are manipulated.

Keywords

∎∎∎  

References

  1. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668CrossRefGoogle Scholar
  2. Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of Superconductivity. Phys Rev 108:1175MathSciNetCrossRefzbMATHGoogle Scholar
  3. Barel I, Urbakh M, Jansen L, Schirmeisen A (2010) Multibond dynamics of nanoscale friction: the role of temperature. Phys Rev Lett 104:066104CrossRefGoogle Scholar
  4. Benassi A, Vanossi A, Santoro GE, Tosatti E (2011) Sliding over a phase transition. Phys Rev Lett 106:256102CrossRefGoogle Scholar
  5. Bennewitz R, Gyalog T, Guggisberg M, Bammerlin M, Meyer E, Güntherodt H-J (1999) Atomic-scale stick-slip processes on Cu(111). Phys Rev B 60:R11301–R11304CrossRefGoogle Scholar
  6. Bennewitz R, Foster AS, Kantorovich LN, Bammerlin M, Loppacher C, Schär S, Guggisberg M, Meyer E, Shluger AL (2000) Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory. Phys Rev B 62:2074–2084CrossRefGoogle Scholar
  7. Bennewitz R, Schär S, Barwich V, Pfeiffer O, Meyer E, Krok F, Such B, Kolodzej J, Szymonski M (2001) Atomic-resolution images of radiation damage in KBr. Surf Sci 474:197–202CrossRefGoogle Scholar
  8. Bouhacina T, Aimé JP, Gauthier S, Michel D, Heroguez V (1997) Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys Rev B 56:7694–7703CrossRefGoogle Scholar
  9. Bowden FP, Tabor FP (1950) The friction and lubrication of solids. Oxford Univ. Press, OxfordzbMATHGoogle Scholar
  10. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6:1–7CrossRefGoogle Scholar
  11. Carpick RW, Agraït N, Ogletree DF, Salmeron M (1996) Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J Vac Sci Technol, B 14:1289–1295CrossRefGoogle Scholar
  12. Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550CrossRefGoogle Scholar
  13. Cleveland J, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405CrossRefGoogle Scholar
  14. Denk W, Pohl DW (1991) Local electrical dissipation imaged by scanning force microscopy. Appl Phys Lett 59:2171–2173CrossRefGoogle Scholar
  15. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on adhesion of particles. J Colloid Interface Sci 53:314–326CrossRefGoogle Scholar
  16. Dienwiebel M, Verhoeven G, Pradeep N, Frenken J, Heimberg J, Zandbergen H (2004) Superlubricity of graphite. Phys Rev Lett 92:126101CrossRefGoogle Scholar
  17. Edwards SA, Ducker WA, Sader JE (2008) Influence of atomic force microscope cantilever tilt and induced torque on force measurements. J Appl Phys 103:064513CrossRefGoogle Scholar
  18. Emmrich M, Schneiderbauer F, Huber AJ, Weymouth N, Okabayashi FJ (2015) Giessibl Force field analysis suggests a ñlowering of diffusion barriers in atomic manipulation due to presence of STM tip. Phys Rev Lett 114:146101CrossRefGoogle Scholar
  19. Enachescu M, van den Oetelaar RJA, Carpick RW, Ogletree DF, Flipse CFJ, Salmeron M (1998) Atomic force microscopy study of an ideally hard contact: the diamond(111)/tungsten carbide interface. Phys Rev Lett 81:1877–1880CrossRefGoogle Scholar
  20. Enachescu M, van den Oetelaar RJA, Carpick RW, Ogletree DF, Flipse CFJ, Salmeron M (1999) Observation of proportionality between friction and contact area at the nanometer scale. Tribol Lett 7:73–78CrossRefGoogle Scholar
  21. Fessler G, Zimmermann I, Glatzel T, Gnecco E, Steiner P, Roth R, Keene TD, Liu SX, Decurtins S, Meyer E (2011) Orientation dependent molecular friction on organic layer compound crystals. Appl Phys Lett 98:083119CrossRefGoogle Scholar
  22. Filleter T, Bennewitz R (2010) Structural and frictional properties of graphene lms on SiC(0001) studied by atomic force microscopy. Phys Rev B 81:155412CrossRefGoogle Scholar
  23. Filleter T, Paul W, Bennewitz R (2008) Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys Rev B 77:035430CrossRefGoogle Scholar
  24. Fournier N, Wagner C, Weiss C, Temirov R, Tautz FS (2011) Force-controlled lifting of molecular wires. Phys Rev B 84:035435CrossRefGoogle Scholar
  25. Fujisawa S, Kishi E, Sugawara Y, Morita S (1995) Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys Rev B 51:7849–7857CrossRefGoogle Scholar
  26. Fusco C, Fasolino A (2005) Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71:45413CrossRefGoogle Scholar
  27. Gnecco E (2010) Quasi-isotropy of static friction on hexagonal surface lattices. Europhys Lett 91:66008CrossRefGoogle Scholar
  28. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H-J (2000) Velocity dependence of atomic friction. Phys Rev Lett 84:1172–1175CrossRefGoogle Scholar
  29. Gnecco E, Bennewitz R, Meyer E (2002) Abrasive wear on the atomic scale. Phys Rev Lett 88:215501CrossRefGoogle Scholar
  30. Gnecco E, Roth R, Baratoff A (2012) Analytical expressions for the kinetic friction in the Prandtl-Tomlinson model. Phys Rev B 86:035443CrossRefGoogle Scholar
  31. Goryl M, Budzioch J, Krok F, Wojtaszek M, Kolmer M, Walczak L, Konior J, Gnecco E, Szymonski M (2012) Probing atomic-scale friction on reconstructed surfaces of single-crystal semiconductors. Phys Rev B 85:085308CrossRefGoogle Scholar
  32. Gotsmann B (2011) Tribology: sliding on vacuum. Nat Mater 10:87–88CrossRefGoogle Scholar
  33. Gotsmann B, Seidel C, Anczykowski B, Fuchs H (1999) Conservative and dissipative tip–sample interaction forces probed with dynamic AFM. Phys Rev B 60:11051–11061CrossRefGoogle Scholar
  34. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295:300CrossRefGoogle Scholar
  35. Guggisberg M, Bammerlin M, Baratoff A, Lüthi R, Loppacher C, Battiston FM, Lü J, Bennewitz R, Meyer E, Güntherodt HJ (2000) Dynamic force microscopy across steps on the Si(111)-(7 × 7) surface. Surf Sci 461:255–265CrossRefGoogle Scholar
  36. Gyalog T, Thomas H (1997) Friction between atomically flat surfaces. Europhys Lett 37:195–200CrossRefGoogle Scholar
  37. Gyalog T, Bammerlin M, Lüthi R, Meyer E, Thomas H (1995) Mechanism of atomic friction. Europhys Lett 31:269–274CrossRefGoogle Scholar
  38. Howald L, Meyer E, Lüthi R, Haefke H, Overney R, Rudin H, Güntherodt H-J (1993) Multifunctional probe microscope for facile operation in ultrahigh vacuum. Appl Phys Lett 63:117–119CrossRefGoogle Scholar
  39. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRefGoogle Scholar
  40. Israelachvili JN, Tabor D (1972) Measurement of van der Waals dispersion forces in range 1.5 to 130 nm. Proc R Soc Lond A 331:19Google Scholar
  41. Jacobs TDB, Carpick R (2013) Nanoscale wear as a stress-assisted chemical reaction. Nat Mater 8:108Google Scholar
  42. Jansen L, Hölscher H, Fuchs H, Schirmeisen A (2010) Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett 104:256101CrossRefGoogle Scholar
  43. Johnson KL (1985) Contact mechanics. Cambridge Univ. Press, CambridgeCrossRefzbMATHGoogle Scholar
  44. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc R Soc Lond A 324:301Google Scholar
  45. Kawai S, Koch M, Gnecco E, Sadeghi A, Pawlak R, Glatzel T, Schwarz J, Goedecker S, Hecht S, Baratoff A, Meyer E (2014) Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc Natl Acad Sci USA 111:3968–3972CrossRefGoogle Scholar
  46. Kawai S, Benassi A, Gnecco E, Söde H, Pawlak R, Feng X, Müllen K, Passerone D, Pignedoli CA, Ruffieux P, Fasel R, Meyer E (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957CrossRefGoogle Scholar
  47. Kawakatsu H, Saito T (1996) Scanning force microscopy with two optical levers for detection of deformations of the cantilever. J Vac Sci Technol, B 14:872–876CrossRefGoogle Scholar
  48. Kisiel M, Gnecco E, Gysin U, Marot L, Rast S, Meyer E (2011) Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10:119CrossRefGoogle Scholar
  49. Kisiel M, Pellegrini F, Santoro GE, Samadashvili M, Pawlak R, Benassi A, Gysin U, Buzio R, Gerbi A, Meyer E, Tosatti E (2015) Noncontact atomic force microscope dissipation reveals a Central peak of SrTiO3 structural phase transition. Phys Rev Lett 115:046101CrossRefGoogle Scholar
  50. Kopta S, Salmeron M (2000) The atomic scale origin of wear on mica and its contribution to friction. J Chem Phys 113:8249–8252CrossRefGoogle Scholar
  51. Krylov SY, Jinesh KB, Valk H, Dienwiebel M, Frenken JWM (2005) Thermally induced suppression of friction at the atomic scale. Phys Rev E 71:65101CrossRefGoogle Scholar
  52. Landau LD, Lifshitz EM (1998) Introduction to theoretical physics, vol 7. Nauka, MoscowGoogle Scholar
  53. Langer M, Kisiel M, Pawlak R, Pellegrini F, Santoro GE, Buzio R, Gerbi A, Balakrishnan G, Baratoff A, Tosatti E, Meyer E (2013) Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface. Nat Mater 13:173CrossRefGoogle Scholar
  54. Lantz MA, O’Shea SJ, Welland ME, Johnson KL (1997) Atomic-force-microscope study of contact area and friction on NbSe_2. Phys Rev B 55:10776–10785CrossRefGoogle Scholar
  55. Linnemann R, Gotszalk T, Rangelow IW, Dumania P, Oesterschulze E (1996) Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J Vac Sci Technol, B 14:856–860CrossRefGoogle Scholar
  56. Loppacher C, Bennewitz R, Pfeiffer O, Guggisberg M, Bammerlin M, Schär S, Barwich V, Baratoff A, Meyer E (2000) Experimental aspects of dissipation force microscopy. Phys Rev B 62:13674–13679CrossRefGoogle Scholar
  57. Maier S, Sang Y, Filleter T, Grant M, Bennewitz R, Gnecco E, Meyer E (2005) Fluctuations and jump dynamics in atomic friction experiments. Phys Rev B 72:245418CrossRefGoogle Scholar
  58. Maier S, Gnecco E, Baratoff A, Meyer E (2008) Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys Rev B 78:045432CrossRefGoogle Scholar
  59. Marti O, Colchero J, Mlynek J (1990) Combined scanning force and friction microscopy of mica. Nanotechnology 1:141–144CrossRefGoogle Scholar
  60. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942–1945CrossRefGoogle Scholar
  61. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150:243–269CrossRefGoogle Scholar
  62. McClelland GM, Glosli JN (1992) Friction at the atomic scale. In: Singer L, Pollock HM (eds) NATO ASI Series E, vol 220. Kluwer, Dordrecht, pp 405–425Google Scholar
  63. Meyer G, Amer N (1990) Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl Phys Lett 57:2089–2091CrossRefGoogle Scholar
  64. Meyer E, Lüthi R, Howald L, Bammerlin M, Guggisberg M, Güntherodt H-J (1996) Site-specific friction force spectroscopy. J Vac Sci Technol, B 14:1285–1288CrossRefGoogle Scholar
  65. Müser MH (2004) Structural lubricity: role of dimension and symmetry. Europhys Lett 66:97CrossRefGoogle Scholar
  66. Müser MH, Robbins MO (2000) Conditions for static friction between flat crystalline surfaces. Phys Rev B 61:2335CrossRefGoogle Scholar
  67. Neubauer G, Cohen SR, McClelland GM, Horn DE, Mate CM (1990) Force microscopy with a bidirectional capacitance sensor. Rev Sci Instrum 61:2296–2308CrossRefGoogle Scholar
  68. Neumeister JM, Ducker WA (1994) Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev Sci Instrum 65:2527–2531CrossRefGoogle Scholar
  69. Nita P, Casado S, Dietzel D, Schirmeisen A, Gnecco E (2013) Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnol 24:325302Google Scholar
  70. Nonnenmacher M, Greschner J, Wolter O, Kassing R (1991) Scanning force microscopy with micromachined silicon sensors. J Vac Sci Technol, B 9:1358–1362CrossRefGoogle Scholar
  71. Ogletree DF, Carpick RW, Salmeron M (1996) Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67:3298–3306CrossRefGoogle Scholar
  72. Pawlak R, Ouyang W, Filippov AE, Kalikhman-Razvozov L, Kawai S, Glatzel T, Gnecco E, Baratoff A, Zheng Q-S, Hod O, Urbakh M, Meyer E (2016) Single molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10:713–722CrossRefGoogle Scholar
  73. Pellegrini F, Santoro GE, Tosatti E (2014) Charge-density-wave surface phase slips and noncontact nanofriction. Phys Rev B 89:245416CrossRefzbMATHGoogle Scholar
  74. Persson BNJ (2001) Elastoplastic contact between randomly rough surfaces. Phys Rev Lett 87:116101CrossRefGoogle Scholar
  75. Pfeiffer O, Bennewitz R, Baratoff A, Meyer E, Grütter P (2002) Lateral-force measurements in dynamic force microscopy. Phys Rev B 65:161403CrossRefGoogle Scholar
  76. Pina CM, Miranda R, Gnecco E (2012) Anisotropic surface coupling while sliding on dolomite and calcite crystals. Phys Rev B 85:073402CrossRefGoogle Scholar
  77. Polaczyk C, Schneider T, Schöfer J, Santner E (1998) Microtribological behavior of Au(001) studied by AFM/FFM. Surf Sci 402:454–458CrossRefGoogle Scholar
  78. Prandtl L (1928) A conceptual model for the kinetic theory of solids (in German). Z Angew Math Mech 8:85CrossRefGoogle Scholar
  79. Riedo E, Lévy F, Brune H (2002) Kinetics of capillary condensation in nanoscopic sliding friction. Phys Rev Lett 88:185505CrossRefGoogle Scholar
  80. Roth R, Glatzel T, Steiner P, Gnecco E, Baratoff A, Meyer E (2010) Multiple slips in atomic-scale friction: an indicator for the lateral contact damping. Tribol Lett 39:63CrossRefGoogle Scholar
  81. Roth R, Fajardo OY, Mazo JJ, Meyer E, Gnecco E (2014) Lateral vibration effects in atomic-scale friction. Appl Phys Lett 104:083103CrossRefGoogle Scholar
  82. Sader JE, Green CP (2004) In-plane deformation of cantilever plates with applications to lateral force microscopy. Rev Sci Instrum 75:878–883CrossRefGoogle Scholar
  83. Sang Y, Dubé M, Grant M (2001) Thermal effects on atomic friction. Phys Rev Lett 87:174301CrossRefGoogle Scholar
  84. Schwarz UD, Köster P, Wiesendanger R (1996) Quantitative analysis of lateral force microscopy experiments. Rev Sci Instrum 67:2560–2567CrossRefGoogle Scholar
  85. Schwarz UD, Zwörner O, Köster P, Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads. Phys Rev B 56:6987–6996CrossRefGoogle Scholar
  86. Socoliuc A, Bennewitz R, Gnecco E, Meyer E (2004) Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett 92:134301CrossRefGoogle Scholar
  87. Socoliuc A, Gnecco E, Maier S, Pfeiffer O, Baratoff A, Bennewitz R, Meyer E (2006) Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313:207–210CrossRefGoogle Scholar
  88. Steele WA (1973) The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms. Surf Sci 36:317CrossRefGoogle Scholar
  89. Steiner P, Roth R, Gnecco E, Glatzel T, Baratoff A, Meyer E (2009) Modulation of contact resonance frequency accompanying atomic-scale stickslip in friction force microscopy. Nanotechnology 20:495701Google Scholar
  90. Steiner P, Roth R, Gnecco E, Baratoff A, Meyer E (2010) Angular dependence of static and kinetic friction on alkali halide surfaces. Phys Rev B 82:205417CrossRefGoogle Scholar
  91. Steiner P, Gnecco E, Krok F, Budzioch J, Walczak L, Konior J, Szymonski M, Meyer E (2011) Atomic-scale friction on stepped surfaces of ionic crystals. Phys Rev Lett 106:186104CrossRefGoogle Scholar
  92. Stipe BC, Mamin HJ, Stowe TD, Kenny TW, Rugar D (2001) Noncontact friction and force fluctuations between closely spaced bodies. Phys Rev Lett 87:96801CrossRefGoogle Scholar
  93. Stowe TD, Kenny TW, Thomson J, Rugar D (1999) Silicon dopant imaging by dissipation force microscopy. Appl Phys Lett 75:2785–2787CrossRefGoogle Scholar
  94. Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58:2–13CrossRefGoogle Scholar
  95. Ternes M, Lutz CP, Hirjibehedin CF, Giessibl FJ, Heinrich AJ (2008) The force needed to move an atom. Science 319:1066–1069CrossRefGoogle Scholar
  96. Vilhena G, Pimentel C, Pedraz P, Luo F, Serena PA, Pina CM, Gnecco E, Perez R (2016) Atomic-scale sliding friction on grapheme in water. ACS Nano 10:4288–4293CrossRefGoogle Scholar
  97. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454CrossRefGoogle Scholar
  98. Wagner C, Fournier N, Tautz FS, Temirov R (2014) The role of surface corrugation and tip oscillation in single-molecule manipulation with non-contact atomic force microscope. Beilstein J Nanotechnol 5:202–209CrossRefGoogle Scholar
  99. Weiss M, Elmer FJ (1996) Dry friction in the Frenkel–Kontorova–Tomlinson model: Static properties. Phys Rev B 53:7539–7549CrossRefGoogle Scholar
  100. Zhao X, Hamilton M, Sawyer WG, Perry SS (2007) Thermally activated friction. Tribol Lett 27:113–117CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaJenaGermany
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations