Skip to main content

The Role of Heat Shock Factors in Mammalian Spermatogenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 222))

Abstract

Heat shock transcription factors (HSFs), as regulators of heat shock proteins (HSPs) expression, are well known for their cytoprotective functions during cellular stress. They also play important yet less recognized roles in gametogenesis. All HSF family members are expressed during mammalian spermatogenesis, mainly in spermatocytes and round spermatids which are characterized by extensive chromatin remodeling. Different HSFs could cooperate to maintain proper spermatogenesis. Cooperation of HSF1 and HSF2 is especially well established since their double knockout results in meiosis arrest, spermatocyte apoptosis, and male infertility. Both factors are also involved in the repackaging of the DNA during spermatid differentiation. They can form heterotrimers regulating the basal level of transcription of target genes. Moreover, HSF1/HSF2 interactions are lost in elevated temperatures which can impair the transcription of genes essential for spermatogenesis. In most mammals, spermatogenesis occurs a few degrees below the body temperature and spermatogenic cells are extremely heat-sensitive. Pro-survival pathways are not induced by heat stress (e.g., cryptorchidism) in meiotic and postmeiotic cells. Instead, male germ cells are actively eliminated by apoptosis, which prevents transition of the potentially damaged genetic material to the next generation. Such a response depends on the transcriptional activity of HSF1 which in contrary to most somatic cells, acts as a proapoptotic factor in spermatogenic cells. HSF1 activation could be the main trigger of impaired spermatogenesis related not only to elevated temperature but also to other stress conditions; therefore, HSF1 has been proposed to be the quality control factor in male germ cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abane R, Mezger V (2010) Roles of heat shock factors in gametogenesis and development. FEBS J 277:4150–4172

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Desai NR, Ruffoli R, Carpi A (2008) Lifestyle and testicular dysfunction: a brief update. Biomed Pharmacother 62:550–553. doi:10.1016/j.biopha.2008.07.052

    Article  PubMed  Google Scholar 

  • Ahlskog JK, Björk JK, Elsing AN, Aspelin C, Kallio M, Roos-Mattjus P, Sistonen L (2010) Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol Cell Biol 30:5608–5620. doi:10.1128/MCB.01506-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Henriksson E, Laiho A, Vihervaara A, Rautoma K, Kotaja N, Sistonen L (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci USA 105:11224–11229. doi:10.1073/pnas.0800620105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Vihervaara A, Laiho A, Conter A, Christians ES, Sistonen L, Henriksson E (2010) Heat shock transcription factor 1 localizes to sex chromatin during meiotic repression. J Biol Chem 285:34469–34476. doi:10.1074/jbc.M110.157552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alastalo TP, Lönnström M, Leppä S, Kaarniranta K, Pelto-Huikko M, Sistonen L, Parvinen M (1998) Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp Cell Res 240:16–27. doi:10.1006/excr.1997.3926

    Article  CAS  PubMed  Google Scholar 

  • Alastalo T-P, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570. doi:10.1242/jcs.00671

    Article  CAS  PubMed  Google Scholar 

  • Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L (2013) Key role of lipids in heat stress management. FEBS Lett 587:1970–1980. doi:10.1016/j.febslet.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  • Barqawi A, Trummer H, Meacham R (2004) Effect of prolonged cryptorchidism on germ cell apoptosis and testicular sperm count. Asian J Androl 6:47–51

    PubMed  Google Scholar 

  • Bhowmick BK, Takahata N, Watanabe M, Satta Y (2006) Comparative analysis of human masculinity. Genet Mol Res 5:696–712

    PubMed  Google Scholar 

  • Björk JK, Sandqvist A, Elsing AN, Kotaja N, Sistonen L (2010) miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Dev Camb Engl 137:3177–3184. doi:10.1242/dev.050955

    Google Scholar 

  • Brehm R, Steger K (2005) Regulation of Sertoli cell and germ cell differentiation. Adv Anat Embryol Cell Biol 181:1–93

    Article  CAS  PubMed  Google Scholar 

  • Chaki SP, Misro MM, Ghosh D, Gautam DK, Srinivas M (2005) Apoptosis and cell removal in the cryptorchid rat testis. Apoptosis Int J Program Cell Death 10:395–405. doi:10.1007/s10495-005-0813-7

    Article  CAS  Google Scholar 

  • Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M (2012) Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod 27:3233–3248. doi:10.1093/humrep/des301

    Article  CAS  PubMed  Google Scholar 

  • Christians ES, Benjamin IJ (2006) Heat shock response: lessons from mouse knockouts. Handb Exp Pharmacol 172:139–152

    Google Scholar 

  • Christians E, Campion E, Thompson EM, Renard JP (1995) Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Dev Camb Engl 121:113–122

    CAS  Google Scholar 

  • Davidoff MS, Middendorff R, Müller D, Holstein AF (2009) The neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Adv Anat Embryol Cell Biol 205:1–107

    Article  PubMed  Google Scholar 

  • Dun MD, Aitken RJ, Nixon B (2012) The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 18:420–435. doi:10.1093/humupd/dms009

    Article  PubMed  Google Scholar 

  • Ellis PJI, Clemente EJ, Ball P, Touré A, Ferguson L, Turner JMA, Loveland KL, Affara NA, Burgoyne PS (2005) Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Hum Mol Genet 14:2705–2715. doi:10.1093/hmg/ddi304

    Article  CAS  PubMed  Google Scholar 

  • Elsing AN, Aspelin C, Björk JK, Bergman HA, Himanen SV, Kallio MJ, Roos-Mattjus P, Sistonen L (2014) Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J Cell Biol 206:735–749. doi:10.1083/jcb.201402002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorenza MT, Farkas T, Dissing M, Kolding D, Zimarino V (1995) Complex expression of murine heat shock transcription factors. Nucleic Acids Res 23:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Nakai A (2010) The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277:4112–4125

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S-I, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23:4297–4306. doi:10.1038/sj.emboj.7600435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto M, Hayashida N, Katoh T, Oshima K, Shinkawa T, Prakasam R, Tan K, Inouye S, Takii R, Nakai A (2010) A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol Biol Cell 21:106–116. doi:10.1091/mbc.E09-07-0639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasinska A, Hill S (1990) The effect of hyperthermia on the mouse testis. Neoplasma 37:357–366

    CAS  PubMed  Google Scholar 

  • Goodson ML, Park-Sarge OK, Sarge KD (1995) Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities. Mol Cell Biol 15:5288–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gothard LQ, Ruffner ME, Woodward JG, Park-Sarge O-K, Sarge KD (2003) Lowered temperature set point for activation of the cellular stress response in T-lymphocytes. J Biol Chem 278:9322–9326. doi:10.1074/jbc.M209412200

    Article  CAS  PubMed  Google Scholar 

  • Hayashida N, Inouye S, Fujimoto M, Tanaka Y, Izu H, Takaki E, Ichikawa H, Rho J, Nakai A (2006) A novel HSF1-mediated death pathway that is suppressed by heat shock proteins. EMBO J 25:4773–4783. doi:10.1038/sj.emboj.7601370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, Brown SA, Kingston RE, Calderwood SK (2003) Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278:35465–35475. doi:10.1074/jbc.M304663200

    Article  CAS  PubMed  Google Scholar 

  • Herbomel G, Kloster-Landsberg M, Folco EG, Col E, Usson Y, Vourc’h C, Delon A, Souchier C (2013) Dynamics of the full length and mutated heat shock factor 1 in human cells. PLoS One 8:e67566. doi:10.1371/journal.pone.0067566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikim APS, Lue Y, Yamamoto CM, Vera Y, Rodriguez S, Yen PH, Soeng K, Wang C, Swerdloff RS (2003) Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 144:3167–3175. doi:10.1210/en.2003-0175

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Mivechi NF, Moskophidis D (2001) Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene. Mol Cell Biol 21:8575–8591. doi:10.1128/MCB.21.24.8575-8591.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izu H, Inouye S, Fujimoto M, Shiraishi K, Naito K, Nakai A (2004) Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol Reprod 70:18–24. doi:10.1095/biolreprod.103.020065

    Article  CAS  PubMed  Google Scholar 

  • Ji Z-L, Duan Y-G, Mou L-S, Allam J-P, Haidl G, Cai Z-M (2012) Association of heat shock proteins, heat shock factors and male infertility. Asian Pac J Reprod 1:76–84. doi:10.1016/S2305-0500(13)60053-6

    Article  Google Scholar 

  • Kallio M, Chang Y, Manuel M, Alastalo T-P, Rallu M, Gitton Y, Pirkkala L, Loones M-T, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 21:2591–2601. doi:10.1093/emboj/21.11.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111. doi:10.1007/s12192-008-0068-7

    Article  CAS  PubMed  Google Scholar 

  • Khan VR, Brown IR (2002) The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 7:73–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kichine E, Rozé V, Di Cristofaro J, Taulier D, Navarro A, Streichemberger E, Decarpentrie F, Metzler-Guillemain C, Lévy N, Chiaroni J, Paquis-Flucklinger V, Fellmann F, Mitchell MJ (2012) HSFY genes and the P4 palindrome in the AZFb interval of the human Y chromosome are not required for spermatocyte maturation. Hum Reprod Oxf Engl 27:615–624. doi:10.1093/humrep/der421

    Article  CAS  Google Scholar 

  • Kinoshita K, Shinka T, Sato Y, Kurahashi H, Kowa H, Chen G, Umeno M, Toida K, Kiyokage E, Nakano T, Ito S, Nakahori Y (2006) Expression analysis of a mouse orthologue of HSFY, a candidate for the azoospermic factor on the human Y chromosome. J Med Investig 53:117–122

    Article  Google Scholar 

  • Korfanty J, Stokowy T, Widlak P, Gogler-Piglowska A, Handschuh L, Podkowiński J, Vydra N, Naumowicz A, Toma-Jonik A, Widlak W (2014) Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes. Int J Biochem Cell Biol 57C:76–83. doi:10.1016/j.biocel.2014.10.006

    Article  Google Scholar 

  • Korfanty J, Toma-Jonik A, Naumowicz A, Vydra N, Widlak W (2015) Mechanism of atypical pro-death signalling mediated by the Heat Shock Factor 1. FEBS J 282:76–77

    Google Scholar 

  • Kotaja N, Kimmins S, Brancorsini S, Hentsch D, Vonesch J-L, Davidson I, Parvinen M, Sassone-Corsi P (2004) Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods 1:249–254. doi:10.1038/nmeth1204-249

    Article  CAS  PubMed  Google Scholar 

  • Kus-Liśkiewicz M, Polańska J, Korfanty J, Olbryt M, Vydra N, Toma A, Widłak W (2013) Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia. BMC Genomics 14:456. doi:10.1186/1471-2164-14-456

    Article  PubMed  PubMed Central  Google Scholar 

  • Loison F, Debure L, Nizard P, le Goff P, Michel D, le Dréan Y (2006) Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1-HSF2 heterocomplexes. Biochem J 395:223–231. doi:10.1042/BJ20051190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughlin KR, Manson K, Foreman R, Schwartz B, Heuttner P (1991) The effect of intermittent scrotal hyperthermia on the Sprague-Dawley rat testicle. Adv Exp Med Biol 286:183–185

    Article  CAS  PubMed  Google Scholar 

  • Lue YH, Hikim AP, Swerdloff RS, Im P, Taing KS, Bui T, Leung A, Wang C (1999) Single exposure to heat induces stage-specific germ cell apoptosis in rats: role of intratesticular testosterone on stage specificity. Endocrinology 140:1709–1717. doi:10.1210/endo.140.4.6629

    CAS  Google Scholar 

  • Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI (2001) Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 21:7163–7171. doi:10.1128/MCB.21.21.7163-7171.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  CAS  PubMed  Google Scholar 

  • Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, Li Z, Chen J, Xie J, Liu Y, Jiang Z, Li X, Ye J, Cai Z, Gui Y (2013) A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet 132:159–165. doi:10.1007/s00439-012-1234-7

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Ishikawa T (2000) A nuclear localization signal is essential for stress-induced dimer-to-trimer transition of heat shock transcription factor 3. J Biol Chem 275:34665–34671. doi:10.1074/jbc.M005302200

    Article  CAS  PubMed  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai A, Suzuki M, Tanabe M (2000) Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J 19:1545–1554. doi:10.1093/emboj/19.7.1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neueder A, Achilli F, Moussaoui S, Bates GP (2014) Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. J Biol Chem 289:19894–19906. doi:10.1074/jbc.M114.570739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Ostling P, Björk JK, Roos-Mattjus P, Mezger V, Sistonen L (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282:7077–7086. doi:10.1074/jbc.M607556200

    Article  PubMed  Google Scholar 

  • Park S-M, Kim S-A, Ahn S-G (2015) HSF2 autoregulates its own transcription. Int J Mol Med 36:1173–1179. doi:10.3892/ijmm.2015.2309

    CAS  PubMed  Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J Off Publ Fed Am Soc Exp Biol 15:1118–1131

    CAS  Google Scholar 

  • Ploner C, Kofler R, Villunger A (2008) Noxa: at the tip of the balance between life and death. Oncogene 27(Suppl 1):S84–S92. doi:10.1038/onc.2009.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao M, Zhao X-L, Yang J, Hu S-F, Lei H, Xia W, Zhu C-H (2015) Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl 17:668–675. doi:10.4103/1008-682X.146967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid BO, Mason KA, Withers HR, West J (1981) Effects of hyperthermia and radiation on mouse testis stem cells. Cancer Res 41:4453–4457

    CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266. doi:10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001) Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod 65:229–239

    Article  CAS  PubMed  Google Scholar 

  • Rupik W, Jasik K, Bembenek J, Widłak W (2011) The expression patterns of heat shock genes and proteins and their role during vertebrate’s development. Comp Biochem Physiol A Mol Integr Physiol 159:349–366. doi:10.1016/j.cbpa.2011.04.002

    Article  PubMed  Google Scholar 

  • Salmand PA, Jungas T, Fernandez M, Conter A, Christians ES (2008) Mouse heat-shock factor 1 (HSF1) is involved in testicular response to genotoxic stress induced by doxorubicin. Biol Reprod 79:1092–1101. doi:10.1095/biolreprod.108.070334

    Article  CAS  PubMed  Google Scholar 

  • Sandqvist A, Björk JK, Akerfelt M, Chitikova Z, Grichine A, Vourc’h C, Jolly C, Salminen TA, Nymalm Y, Sistonen L (2009) Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20:1340–1347. doi:10.1091/mbc.E08-08-0864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge KD (1995) Male germ cell-specific alteration in temperature set point of the cellular stress response. J Biol Chem 270:18745–18748

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Park-Sarge OK, Kirby JD, Mayo KE, Morimoto RI (1994) Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol Reprod 50:1334–1343

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yoshida K, Shinka T, Nozawa S, Nakahori Y, Iwamoto T (2006) Altered expression pattern of heat shock transcription factor, Y chromosome (HSFY) may be related to altered differentiation of spermatogenic cells in testes with deteriorated spermatogenesis. Fertil Steril 86:612–618. doi:10.1016/j.fertnstert.2006.01.053

    Article  CAS  PubMed  Google Scholar 

  • Scieglinska D, Krawczyk Z (2015) Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones 20:221–235. doi:10.1007/s12192-014-0548-x

    Article  CAS  PubMed  Google Scholar 

  • Shinka T, Sato Y, Chen G, Naroda T, Kinoshita K, Unemi Y, Tsuji K, Toida K, Iwamoto T, Nakahori Y (2004) Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol Reprod 71:297–306. doi:10.1095/biolreprod.103.023580

    Article  CAS  PubMed  Google Scholar 

  • Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A (2011) Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583. doi:10.1091/mbc.E11-04-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla KK, Mahdi AA, Rajender S (2012) Apoptosis, spermatogenesis and male infertility. Front Biosci (Elite Ed) 4:746–754

    Article  Google Scholar 

  • Sistonen L, Sarge KD, Morimoto RI (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 14:2087–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A (2016) Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 96:55–97. doi:10.1152/physrev.00017.2015

    Article  PubMed  Google Scholar 

  • Stahl PJ, Mielnik A, Schlegel PN, Paduch DA (2011) Heat shock factor Y chromosome (HSFY) mRNA level predicts the presence of retrievable testicular sperm in men with nonobstructive azoospermia. Fertil Steril 96:303–308. doi:10.1016/j.fertnstert.2011.05.055

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD (2009) Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ 16:638–647. doi:10.1038/cdd.2008.189

    Article  CAS  PubMed  Google Scholar 

  • Tao S-X, Guo J, Zhang X-S, Li Y-C, Hu Z-Y, Han C-S, Liu Y-X (2006) Germ cell apoptosis induced by experimental cryptorchidism is mediated by multiple molecular pathways in Cynomolgus Macaque. Front Biosci J Virtual Library 11:1077–1089

    Article  CAS  Google Scholar 

  • Toshimori K (2009) Dynamics of the mammalian sperm head: modifications and maturation events from spermatogenesis to egg activation. Adv Anat Embryol Cell Biol 204:5–94

    PubMed  Google Scholar 

  • Trinklein ND, Chen WC, Kingston RE, Myers RM (2004) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress Chaperones 9:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JMA (2007) Meiotic sex chromosome inactivation. Dev Camb Engl 134:1823–1831. doi:10.1242/dev.000018

    CAS  Google Scholar 

  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347:1260419. doi:10.1126/science.1260419

    Article  PubMed  Google Scholar 

  • Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2:a004390. doi:10.1101/cshperspect.a004390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vihervaara A, Sergelius C, Vasara J, Blom MAH, Elsing AN, Roos-Mattjus P, Sistonen L (2013) Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci USA 110:E3388–E3397. doi:10.1073/pnas.1305275110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vydra N, Malusecka E, Jarzab M, Lisowska K, Glowala-Kosinska M, Benedyk K, Widlak P, Krawczyk Z, Widlak W (2006) Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell Death Differ 13:212–222. doi:10.1038/sj.cdd.4401758

    Article  CAS  PubMed  Google Scholar 

  • Vydra N, Toma A, Widlak W (2014) Pleiotropic role of HSF1 in neoplastic transformation. Curr Cancer Drug Targets 14:144–155. doi:10.2174/1568009614666140122155942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhang J, Moskophidis D, Mivechi NF (2003) Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36:48–61. doi:10.1002/gene.10200

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF (2004) Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38:66–80. doi:10.1002/gene.20005

    Article  PubMed  Google Scholar 

  • Widłak W, Benedyk K, Vydra N, Głowala M, Scieglińska D, Małusecka E, Nakai A, Krawczyk Z (2003) Expression of a constitutively active mutant of heat shock factor 1 under the control of testis-specific hst70 gene promoter in transgenic mice induces degeneration of seminiferous epithelium. Acta Biochim Pol 50:535–541, 035002535

    PubMed  Google Scholar 

  • Widlak W, Vydra N, Malusecka E, Dudaladava V, Winiarski B, Scieglińska D, Widlak P (2007a) Heat shock transcription factor 1 down-regulates spermatocyte-specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes. Genes Cells Devoted Mol Cell Mech 12:487–499. doi:10.1111/j.1365-2443.2007.01069.x

    Article  CAS  Google Scholar 

  • Widlak W, Winiarski B, Krawczyk A, Vydra N, Malusecka E, Krawczyk Z (2007b) Inducible 70 kDa heat shock protein does not protect spermatogenic cells from damage induced by cryptorchidism. Int J Androl 30:80–87. doi:10.1111/j.1365-2605.2006.00713.x

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson DC, Murphy LA, Sarge KD (2008) Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa. Biol Reprod 79:283–288. doi:10.1095/biolreprod.107.066241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Jin X, Tsueng G, Afrasiabi C, Su AI (2016) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44:D313–D316. doi:10.1093/nar/gkv1104

    Article  PubMed  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952. doi:10.1093/emboj/18.21.5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML, Hong Y, Park-Sarge O-K, Sarge KD (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423. doi:10.1126/science.1106478

    Article  CAS  PubMed  Google Scholar 

  • Xu Y-M, Huang D-Y, Chiu J-F, Lau ATY (2012) Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 11:2625–2634. doi:10.1021/pr201151a

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto CM, Sinha Hikim AP, Huynh PN, Shapiro B, Lue Y, Salameh WA, Wang C, Swerdloff RS (2000) Redistribution of Bax is an early step in an apoptotic pathway leading to germ cell death in rats, triggered by mild testicular hyperthermia. Biol Reprod 63:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K, Sakurai H (2009) Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276:1962–1974. doi:10.1111/j.1742-4658.2009.06923.x

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang Y, Zhang Q, Lai Y, Li C, Zhang Q, Huang W, Duan Y, Jiang Z, Li X, Cai Z, Mou L, Gui Y (2014) Identification of Hsf1 as a novel androgen receptor-regulated gene in mouse Sertoli cells. Mol Reprod Dev 81:514–523. doi:10.1002/mrd.22318

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Hawkins KL, DeWolf WC, Morgentaler A (1997) Heat stress causes testicular germ cell apoptosis in adult mice. J Androl 18:159–165

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre, Poland, grant number 2014/13/B/NZ3/04650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieslawa Widlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Widlak, W., Vydra, N. (2017). The Role of Heat Shock Factors in Mammalian Spermatogenesis. In: MacPhee, D. (eds) The Role of Heat Shock Proteins in Reproductive System Development and Function. Advances in Anatomy, Embryology and Cell Biology, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-51409-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51409-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51408-6

  • Online ISBN: 978-3-319-51409-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics