Skip to main content

Towards Health Recommendation Systems: An Approach for Providing Automated Personalized Health Feedback from Mobile Data

  • Chapter
  • First Online:
Mobile Health

Abstract

Personal data acquisition using smartphones has become robust and achievable in recent times: improvements in user interfaces have made manual inputting more straightforward and intuitive, while advances in sensing technology has made tracking more accurate and less obtrusive. Moreover, algorithmic advances in data mining and machine learning has led to better a interpretation and determination factors indicative of health conditions and outcomes. However, these indicators are still under-utilized when providing feedback to the user or a health worker. Mobile health systems that can exploit such indicators could potentially deliver precision feedback personalized to the user’s condition and also lead to increases in adherence and improve efficacy. In this book chapter, we will provide an overview of the state of the art in mobile health feedback systems and then discuss MyBehavior, an example of a feedback system that utilizes individual data streams and indicators. MyBehavior is the first personalized system that provides health beneficial recommendations based on physical activity and dietary data acquired using smartphones. The system learns common healthy and unhealthy behaviors from activity and dietary logs, and then prioritizes and suggests actions similar to existing behaviors. Such prioritization is done to promote a sense of familiarity to the suggestions and increase the likelihood of adoption. We also formulate a basis framework for future systems similar to MyBehavior and discuss challenges with regard to transference and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is an existing literature in information retrieval and ranking on implicit feedback [10, 48]. The counter part is explicit feedback where the user says which suggestions are more applicable. We explore explicit feedback later where we combine explicit and implicit feedback.

  2. 2.

    Other physical exercises include activities like running, yoga, exercise etc. and exclude calories lost in sedentary activities.

References

  1. Abdullah, S., Matthews, M., Murnane, E.L., Gay, G., Choudhury, T.: Towards circadian computing: early to bed and early to rise makes some of us unhealthy and sleep deprived. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 673–684. ACM (2014)

    Google Scholar 

  2. Adams, P., Rabbi, M., Rahman, T., Matthews, M., Voida, A., Gay, G., Choudhury, T., Voida, S.: Towards personal stress informatics: comparing minimally invasive techniques for measuring daily stress in the wild. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 72–79. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2014)

    Google Scholar 

  3. Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., Leon, A.S.: 2011 compendium of physical activities: a second update of codes and met values. Medicine and science in sports and exercise 43(8), 1575–1581 (2011)

    Article  Google Scholar 

  4. Ajzen, I.: Theory of planned behavior. Handb Theor Soc Psychol Vol One 1, 438 (2011)

    Google Scholar 

  5. Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)

    Article  Google Scholar 

  6. Badanidiyuru, A., Kleinberg, R., Slivkins, A.: Bandits with knapsacks. In: Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pp. 207–216. IEEE (2013)

    Google Scholar 

  7. Bandura, A., McClelland, D.C.: Social learning theory (1977)

    Google Scholar 

  8. Basu, S.: Conversational scene analysis. Ph.D. thesis, MaSSachuSettS InStitute of Technology (2002)

    Google Scholar 

  9. Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. arXiv preprint arXiv:1204.5721 (2012)

    Google Scholar 

  10. Chapelle, O., Joachims, T., Radlinski, F., Yue, Y.: Large-scale validation and analysis of interleaved search evaluation. ACM Transactions on Information Systems (TOIS) 30(1), 6 (2012)

    Google Scholar 

  11. Choe, E.K., Lee, B., Kay, M., Pratt, W., Kientz, J.A.: Sleeptight: low-burden, self-monitoring technology for capturing and reflecting on sleep behaviors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 121–132. ACM (2015)

    Google Scholar 

  12. Choudhury, T.K.: Sensing and modeling human networks. Ph.D. thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  13. Cialdini, R.B., Garde, N.: Influence. A. Michel (1987)

    Google Scholar 

  14. Consolvo, S., McDonald, D.W., Landay, J.A.: Theory-driven design strategies for technologies that support behavior change in everyday life. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 405–414. ACM (2009)

    Google Scholar 

  15. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., et al.: Activity sensing in the wild: a field trial of ubifit garden. In: Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, pp. 1797–1806. ACM (2008)

    Google Scholar 

  16. Dipietro, L., Caspersen, C.J., Ostfeld, A.M., Nadel, E.R.: A survey for assessing physical activity among older adults. Medicine & Science in Sports & Exercise (1993)

    Google Scholar 

  17. Dourish, P.: Where the action is: the foundations of embodied interaction. MIT press (2004)

    Google Scholar 

  18. Dr. James Fricton DDS, M.: Preventing chronic pain: A human systems approach. University of Minnesota (2015)

    Google Scholar 

  19. Estrin, D.: Small data, where n = me. Commun. ACM 57(4), 32–34 (2014). doi: 10.1145/2580944. URL http://doi.acm.org/10.1145/2580944

  20. Fogg, B.: Mobile persuasion: 20 perspectives on the future of behavior change. Mobile Persuasion (2007)

    Google Scholar 

  21. Fogg, B.: A behavior model for persuasive design. In: Proceedings of the 4th international Conference on Persuasive Technology, p. 40. ACM (2009)

    Google Scholar 

  22. Food, U., Administration, D., et al.: Paving the way for personalized medicine: Fda\(\tilde{\mathrm{O}}\) s role in a new era of medical product development. Silver Spring, MD: US Food and Drug Administration (2013)

    Google Scholar 

  23. Fricton, J., Anderson, K., Clavel, A., Fricton, R., Hathaway, K., Kang, W., Jaeger, B., Maixner, W., Pesut, D., Russell, J., et al.: Preventing chronic pain: a human systems approach\(\tilde{\mathrm{N}}\) results from a massive open online course. Global Advances in Health and Medicine 4(5), 23–32 (2015)

    Article  Google Scholar 

  24. Grove, W.M.: Thinking clearly about psychology

    Google Scholar 

  25. Harris, J., Benedict, F.: Biometric studies of basal metabolism. Washington, DC: Carnegie Institution (1919)

    Google Scholar 

  26. Hochbaum, G., Rosenstock, I., Kegels, S.: Health belief model. United States Public Health Service (1952)

    Google Scholar 

  27. Isbister, K., Höök, K., Sharp, M., Laaksolahti, J.: The sensual evaluation instrument: developing an affective evaluation tool. In: Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 1163–1172. ACM (2006)

    Google Scholar 

  28. Karkar, R., Zia, J., Vilardaga, R., Mishra, S.R., Fogarty, J., Munson, S.A., Kientz, J.A.: A framework for self-experimentation in personalized health. Journal of the American Medical Informatics Association p. ocv150 (2015)

    Google Scholar 

  29. Kay, M., Choe, E.K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., Kientz, J.A.: Lullaby: a capture & access system for understanding the sleep environment. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 226–234. ACM (2012)

    Google Scholar 

  30. Kim, H., Jordan, M.I., Sastry, S., Ng, A.Y.: Autonomous helicopter flight via reinforcement learning. In: Advances in neural information processing systems, p. None (2003)

    Google Scholar 

  31. Kim, S.C., Kim, J.H., Yoon, J.H.: Method and system for providing location-based advertisement contents (2012). US Patent App. 13/413,128

    Google Scholar 

  32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  33. Kukafka, R.: Tailored health communication. Consumer Health Informatics: Informing Consumers and Improving Health Care pp. 22–33 (2005)

    Google Scholar 

  34. Lally, P., Van Jaarsveld, C.H., Potts, H.W., Wardle, J.: How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology 40(6), 998–1009 (2010)

    Google Scholar 

  35. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Communications Magazine, IEEE 48(9), 140–150 (2010)

    Article  Google Scholar 

  36. Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.T.: Bewell: A smartphone application to monitor, model and promote wellbeing. In: 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth2011) (2011)

    Google Scholar 

  37. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th international conference on World wide web, pp. 661–670. ACM (2010)

    Google Scholar 

  38. Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell, A.T., Gatica-Perez, D., Choudhury, T.: Stresssense: Detecting stress in unconstrained acoustic environments using smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 351–360. ACM (2012)

    Google Scholar 

  39. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 91–98. ACM (2014)

    Google Scholar 

  40. Mahdaviani, M., Choudhury, T.: Fast and scalable training of semi-supervised crfs with application to activity recognition. In: Advances in Neural Information Processing Systems, pp. 977–984 (2008)

    Google Scholar 

  41. Martin, J.H., Jurafsky, D.: Speech and language processing. International Edition (2000)

    Google Scholar 

  42. Meyers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N., Guadarrama, S., Papandreou, G., Huang, J., Murphy, K.P.: Im2calories: towards an automated mobile vision food diary. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1233–1241 (2015)

    Google Scholar 

  43. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

    Google Scholar 

  44. Mohr, C.D., Schueller, M.S., Montague, E., Burns, N.M., Rashidi, P.: The behavioral intervention technology model: An integrated conceptual and technological framework for ehealth and mhealth interventions. J Med Internet Res 16(6), e146 (2014). doi: 10.2196/jmir.3077. URL http://www.jmir.org/2014/6/e146/

  45. Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W.E., Gnagy, B., Fabiano, G.A., Waxmonsky, J.G., Yu, J., Murphy, S.A.: Q-learning: A data analysis method for constructing adaptive interventions. Psychological methods 17(4), 478 (2012)

    Article  Google Scholar 

  46. Nahum-Shani, I., Smith, S.N., Tewari, A., Witkiewitz, K., Collins, L.M., Spring, B., Murphy, S.: Just in time adaptive interventions (jitais): An organizing framework for ongoing health behavior support. Methodology Center technical report (14-126) (2014)

    Google Scholar 

  47. Noronha, J., Hysen, E., Zhang, H., Gajos, K.Z.: Platemate: crowdsourcing nutritional analysis from food photographs. In: Proceedings of the 24th annual ACM symposium on User interface software and technology, pp. 1–12. ACM (2011)

    Google Scholar 

  48. Pan, B., Hembrooke, H., Joachims, T., Lorigo, L., Gay, G., Granka, L.: In google we trust: Users\(\tilde{\mathrm{O}}\) decisions on rank, position, and relevance. Journal of Computer-Mediated Communication 12(3), 801–823 (2007)

    Article  Google Scholar 

  49. Pellegrini, C.A., Hoffman, S.A., Collins, L.M., Spring, B.: Optimization of remotely delivered intensive lifestyle treatment for obesity using the multiphase optimization strategy: Opt-in study protocol. Contemporary clinical trials 38(2), 251–259 (2014)

    Article  Google Scholar 

  50. Pollak, J.P., Adams, P., Gay, G.: Pam: a photographic affect meter for frequent, in situ measurement of affect. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 725–734. ACM (2011)

    Google Scholar 

  51. Rabbi, M., Ali, S., Choudhury, T., Berke, E.: Passive and in-situ assessment of mental and physical well-being using mobile sensors. In: Proc. 13th ACM Int\(\tilde{\mathrm{O}}\) l Conf. Ubiquitous Computing, pp. 385–394 (2011)

    Google Scholar 

  52. Rabbi, M., Aung, M.H., Zhang, M., Choudhury, T.: Mybehavior: Automatic personalized health feedback from user behaviors and preferences using smartphones. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, pp. 707–718. ACM, New York, NY, USA (2015). doi: 10.1145/2750858.2805840. URL http://doi.acm.org/10.1145/2750858.2805840

  53. Rabbi, M., Caetano, T., Costa, J., Abdullah, S., Zhang, M., Choudhury, T.: Saint: A scalable sensing and inference toolkit (2015)

    Google Scholar 

  54. Rabbi, M., Costa, J., Okeke, F., Schachere, M., Zhang, M., Choudhury, T.: An intelligent crowd-worker selection approach for reliable content labeling of food images. In: Proceedings of the Conference on Wireless Health, WH ’15, pp. 9:1–9:8. ACM, New York, NY, USA (2015). doi: 10.1145/2811780.2811955. URL http://doi.acm.org/10.1145/2811780.2811955

  55. Rabbi, M., Pfammatter, A., Zhang, M., Spring, B., Choudhury, T.: Automated personalized feedback for physical activity and dietary behavior change with mobile phones: A randomized controlled trial on adults. JMIR mHealth uHealth 3(2), e42 (2015). doi: 10.2196/mhealth.4160. URL http://mhealth.jmir.org/2015/2/e42/

  56. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: Emotionsense: a mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM international conference on Ubiquitous computing, pp. 281–290. ACM (2010)

    Google Scholar 

  57. Ritzer, G.: Sociological theory. Tata McGraw-Hill Education (2008)

    Google Scholar 

  58. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society 58(5), 527–535 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  59. Saeb, S., Zhang, M., Karr, C.J., Schueller, S.M., Corden, M.E., Kording, K.P., Mohr, D.C.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of medical Internet research 17(7) (2015)

    Google Scholar 

  60. Samanta, J., Kendall, J., Samanta, A.: Chronic low back pain. Bmj 326(7388), 535 (2003)

    Article  Google Scholar 

  61. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM (2002)

    Google Scholar 

  62. Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press (2008)

    Google Scholar 

  63. Sriraghavendra, R., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on, vol. 1, pp. 461–465. IEEE (2007)

    Google Scholar 

  64. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press Cambridge (1998)

    Google Scholar 

  65. Tennenhouse, D.: Proactive computing. Communications of the ACM 43(5), 43–50 (2000)

    Google Scholar 

  66. Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., Campbell, A.T.: Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 3–14. ACM (2014)

    Google Scholar 

  67. Yang, L., Cui, Y., Zhang, F., Pollak, J.P., Belongie, S., Estrin, D.: Plateclick: Bootstrapping food preferences through an adaptive visual interface. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 183–192. ACM (2015)

    Google Scholar 

  68. Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The k-armed dueling bandits problem. Journal of Computer and System Sciences 78(5), 1538–1556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personal gazetteers: An interactive clustering approach. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, GIS ’04, pp. 266–273. ACM, New York, NY, USA (2004). doi: 10.1145/1032222.1032261. URL http://doi.acm.org/10.1145/1032222.1032261

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashfiqui Rabbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rabbi, M., Hane Aung, M., Choudhury, T. (2017). Towards Health Recommendation Systems: An Approach for Providing Automated Personalized Health Feedback from Mobile Data. In: Rehg, J., Murphy, S., Kumar, S. (eds) Mobile Health. Springer, Cham. https://doi.org/10.1007/978-3-319-51394-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51394-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51393-5

  • Online ISBN: 978-3-319-51394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics