Abstract
Personal data acquisition using smartphones has become robust and achievable in recent times: improvements in user interfaces have made manual inputting more straightforward and intuitive, while advances in sensing technology has made tracking more accurate and less obtrusive. Moreover, algorithmic advances in data mining and machine learning has led to better a interpretation and determination factors indicative of health conditions and outcomes. However, these indicators are still under-utilized when providing feedback to the user or a health worker. Mobile health systems that can exploit such indicators could potentially deliver precision feedback personalized to the user’s condition and also lead to increases in adherence and improve efficacy. In this book chapter, we will provide an overview of the state of the art in mobile health feedback systems and then discuss MyBehavior, an example of a feedback system that utilizes individual data streams and indicators. MyBehavior is the first personalized system that provides health beneficial recommendations based on physical activity and dietary data acquired using smartphones. The system learns common healthy and unhealthy behaviors from activity and dietary logs, and then prioritizes and suggests actions similar to existing behaviors. Such prioritization is done to promote a sense of familiarity to the suggestions and increase the likelihood of adoption. We also formulate a basis framework for future systems similar to MyBehavior and discuss challenges with regard to transference and adaptation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Other physical exercises include activities like running, yoga, exercise etc. and exclude calories lost in sedentary activities.
References
Abdullah, S., Matthews, M., Murnane, E.L., Gay, G., Choudhury, T.: Towards circadian computing: early to bed and early to rise makes some of us unhealthy and sleep deprived. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 673–684. ACM (2014)
Adams, P., Rabbi, M., Rahman, T., Matthews, M., Voida, A., Gay, G., Choudhury, T., Voida, S.: Towards personal stress informatics: comparing minimally invasive techniques for measuring daily stress in the wild. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 72–79. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2014)
Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., Leon, A.S.: 2011 compendium of physical activities: a second update of codes and met values. Medicine and science in sports and exercise 43(8), 1575–1581 (2011)
Ajzen, I.: Theory of planned behavior. Handb Theor Soc Psychol Vol One 1, 438 (2011)
Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)
Badanidiyuru, A., Kleinberg, R., Slivkins, A.: Bandits with knapsacks. In: Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pp. 207–216. IEEE (2013)
Bandura, A., McClelland, D.C.: Social learning theory (1977)
Basu, S.: Conversational scene analysis. Ph.D. thesis, MaSSachuSettS InStitute of Technology (2002)
Bubeck, S., Cesa-Bianchi, N.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. arXiv preprint arXiv:1204.5721 (2012)
Chapelle, O., Joachims, T., Radlinski, F., Yue, Y.: Large-scale validation and analysis of interleaved search evaluation. ACM Transactions on Information Systems (TOIS) 30(1), 6 (2012)
Choe, E.K., Lee, B., Kay, M., Pratt, W., Kientz, J.A.: Sleeptight: low-burden, self-monitoring technology for capturing and reflecting on sleep behaviors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 121–132. ACM (2015)
Choudhury, T.K.: Sensing and modeling human networks. Ph.D. thesis, Massachusetts Institute of Technology (2003)
Cialdini, R.B., Garde, N.: Influence. A. Michel (1987)
Consolvo, S., McDonald, D.W., Landay, J.A.: Theory-driven design strategies for technologies that support behavior change in everyday life. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 405–414. ACM (2009)
Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., et al.: Activity sensing in the wild: a field trial of ubifit garden. In: Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems, pp. 1797–1806. ACM (2008)
Dipietro, L., Caspersen, C.J., Ostfeld, A.M., Nadel, E.R.: A survey for assessing physical activity among older adults. Medicine & Science in Sports & Exercise (1993)
Dourish, P.: Where the action is: the foundations of embodied interaction. MIT press (2004)
Dr. James Fricton DDS, M.: Preventing chronic pain: A human systems approach. University of Minnesota (2015)
Estrin, D.: Small data, where n = me. Commun. ACM 57(4), 32–34 (2014). doi: 10.1145/2580944. URL http://doi.acm.org/10.1145/2580944
Fogg, B.: Mobile persuasion: 20 perspectives on the future of behavior change. Mobile Persuasion (2007)
Fogg, B.: A behavior model for persuasive design. In: Proceedings of the 4th international Conference on Persuasive Technology, p. 40. ACM (2009)
Food, U., Administration, D., et al.: Paving the way for personalized medicine: Fda\(\tilde{\mathrm{O}}\) s role in a new era of medical product development. Silver Spring, MD: US Food and Drug Administration (2013)
Fricton, J., Anderson, K., Clavel, A., Fricton, R., Hathaway, K., Kang, W., Jaeger, B., Maixner, W., Pesut, D., Russell, J., et al.: Preventing chronic pain: a human systems approach\(\tilde{\mathrm{N}}\) results from a massive open online course. Global Advances in Health and Medicine 4(5), 23–32 (2015)
Grove, W.M.: Thinking clearly about psychology
Harris, J., Benedict, F.: Biometric studies of basal metabolism. Washington, DC: Carnegie Institution (1919)
Hochbaum, G., Rosenstock, I., Kegels, S.: Health belief model. United States Public Health Service (1952)
Isbister, K., Höök, K., Sharp, M., Laaksolahti, J.: The sensual evaluation instrument: developing an affective evaluation tool. In: Proceedings of the SIGCHI conference on Human Factors in computing systems, pp. 1163–1172. ACM (2006)
Karkar, R., Zia, J., Vilardaga, R., Mishra, S.R., Fogarty, J., Munson, S.A., Kientz, J.A.: A framework for self-experimentation in personalized health. Journal of the American Medical Informatics Association p. ocv150 (2015)
Kay, M., Choe, E.K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., Kientz, J.A.: Lullaby: a capture & access system for understanding the sleep environment. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 226–234. ACM (2012)
Kim, H., Jordan, M.I., Sastry, S., Ng, A.Y.: Autonomous helicopter flight via reinforcement learning. In: Advances in neural information processing systems, p. None (2003)
Kim, S.C., Kim, J.H., Yoon, J.H.: Method and system for providing location-based advertisement contents (2012). US Patent App. 13/413,128
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
Kukafka, R.: Tailored health communication. Consumer Health Informatics: Informing Consumers and Improving Health Care pp. 22–33 (2005)
Lally, P., Van Jaarsveld, C.H., Potts, H.W., Wardle, J.: How are habits formed: Modelling habit formation in the real world. European Journal of Social Psychology 40(6), 998–1009 (2010)
Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Communications Magazine, IEEE 48(9), 140–150 (2010)
Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.T.: Bewell: A smartphone application to monitor, model and promote wellbeing. In: 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth2011) (2011)
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th international conference on World wide web, pp. 661–670. ACM (2010)
Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell, A.T., Gatica-Perez, D., Choudhury, T.: Stresssense: Detecting stress in unconstrained acoustic environments using smartphones. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 351–360. ACM (2012)
Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 91–98. ACM (2014)
Mahdaviani, M., Choudhury, T.: Fast and scalable training of semi-supervised crfs with application to activity recognition. In: Advances in Neural Information Processing Systems, pp. 977–984 (2008)
Martin, J.H., Jurafsky, D.: Speech and language processing. International Edition (2000)
Meyers, A., Johnston, N., Rathod, V., Korattikara, A., Gorban, A., Silberman, N., Guadarrama, S., Papandreou, G., Huang, J., Murphy, K.P.: Im2calories: towards an automated mobile vision food diary. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1233–1241 (2015)
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
Mohr, C.D., Schueller, M.S., Montague, E., Burns, N.M., Rashidi, P.: The behavioral intervention technology model: An integrated conceptual and technological framework for ehealth and mhealth interventions. J Med Internet Res 16(6), e146 (2014). doi: 10.2196/jmir.3077. URL http://www.jmir.org/2014/6/e146/
Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W.E., Gnagy, B., Fabiano, G.A., Waxmonsky, J.G., Yu, J., Murphy, S.A.: Q-learning: A data analysis method for constructing adaptive interventions. Psychological methods 17(4), 478 (2012)
Nahum-Shani, I., Smith, S.N., Tewari, A., Witkiewitz, K., Collins, L.M., Spring, B., Murphy, S.: Just in time adaptive interventions (jitais): An organizing framework for ongoing health behavior support. Methodology Center technical report (14-126) (2014)
Noronha, J., Hysen, E., Zhang, H., Gajos, K.Z.: Platemate: crowdsourcing nutritional analysis from food photographs. In: Proceedings of the 24th annual ACM symposium on User interface software and technology, pp. 1–12. ACM (2011)
Pan, B., Hembrooke, H., Joachims, T., Lorigo, L., Gay, G., Granka, L.: In google we trust: Users\(\tilde{\mathrm{O}}\) decisions on rank, position, and relevance. Journal of Computer-Mediated Communication 12(3), 801–823 (2007)
Pellegrini, C.A., Hoffman, S.A., Collins, L.M., Spring, B.: Optimization of remotely delivered intensive lifestyle treatment for obesity using the multiphase optimization strategy: Opt-in study protocol. Contemporary clinical trials 38(2), 251–259 (2014)
Pollak, J.P., Adams, P., Gay, G.: Pam: a photographic affect meter for frequent, in situ measurement of affect. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 725–734. ACM (2011)
Rabbi, M., Ali, S., Choudhury, T., Berke, E.: Passive and in-situ assessment of mental and physical well-being using mobile sensors. In: Proc. 13th ACM Int\(\tilde{\mathrm{O}}\) l Conf. Ubiquitous Computing, pp. 385–394 (2011)
Rabbi, M., Aung, M.H., Zhang, M., Choudhury, T.: Mybehavior: Automatic personalized health feedback from user behaviors and preferences using smartphones. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, pp. 707–718. ACM, New York, NY, USA (2015). doi: 10.1145/2750858.2805840. URL http://doi.acm.org/10.1145/2750858.2805840
Rabbi, M., Caetano, T., Costa, J., Abdullah, S., Zhang, M., Choudhury, T.: Saint: A scalable sensing and inference toolkit (2015)
Rabbi, M., Costa, J., Okeke, F., Schachere, M., Zhang, M., Choudhury, T.: An intelligent crowd-worker selection approach for reliable content labeling of food images. In: Proceedings of the Conference on Wireless Health, WH ’15, pp. 9:1–9:8. ACM, New York, NY, USA (2015). doi: 10.1145/2811780.2811955. URL http://doi.acm.org/10.1145/2811780.2811955
Rabbi, M., Pfammatter, A., Zhang, M., Spring, B., Choudhury, T.: Automated personalized feedback for physical activity and dietary behavior change with mobile phones: A randomized controlled trial on adults. JMIR mHealth uHealth 3(2), e42 (2015). doi: 10.2196/mhealth.4160. URL http://mhealth.jmir.org/2015/2/e42/
Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: Emotionsense: a mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM international conference on Ubiquitous computing, pp. 281–290. ACM (2010)
Ritzer, G.: Sociological theory. Tata McGraw-Hill Education (2008)
Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society 58(5), 527–535 (1952)
Saeb, S., Zhang, M., Karr, C.J., Schueller, S.M., Corden, M.E., Kording, K.P., Mohr, D.C.: Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: an exploratory study. Journal of medical Internet research 17(7) (2015)
Samanta, J., Kendall, J., Samanta, A.: Chronic low back pain. Bmj 326(7388), 535 (2003)
Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM (2002)
Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press (2008)
Sriraghavendra, R., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on, vol. 1, pp. 461–465. IEEE (2007)
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press Cambridge (1998)
Tennenhouse, D.: Proactive computing. Communications of the ACM 43(5), 43–50 (2000)
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., Campbell, A.T.: Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 3–14. ACM (2014)
Yang, L., Cui, Y., Zhang, F., Pollak, J.P., Belongie, S., Estrin, D.: Plateclick: Bootstrapping food preferences through an adaptive visual interface. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 183–192. ACM (2015)
Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The k-armed dueling bandits problem. Journal of Computer and System Sciences 78(5), 1538–1556 (2012)
Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personal gazetteers: An interactive clustering approach. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, GIS ’04, pp. 266–273. ACM, New York, NY, USA (2004). doi: 10.1145/1032222.1032261. URL http://doi.acm.org/10.1145/1032222.1032261
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Rabbi, M., Hane Aung, M., Choudhury, T. (2017). Towards Health Recommendation Systems: An Approach for Providing Automated Personalized Health Feedback from Mobile Data. In: Rehg, J., Murphy, S., Kumar, S. (eds) Mobile Health. Springer, Cham. https://doi.org/10.1007/978-3-319-51394-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-51394-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51393-5
Online ISBN: 978-3-319-51394-2
eBook Packages: Computer ScienceComputer Science (R0)