Mobile Health pp 289-312 | Cite as

A New Direction for Biosensing: RF Sensors for Monitoring Cardio-Pulmonary Function

  • Ju Gao
  • Siddharth Baskar
  • Diyan Teng
  • Mustafa al’Absi
  • Santosh Kumar
  • Emre ErtinEmail author


Long-term monitoring of physiology at large-scale can help determine potential causes and early biomarkers of chronic diseases. Physiological monitoring today, however, requires wearing of sensors such as electrodes for ECG and belt around lungs for respiration, and is unsuitable for monitoring of patients and healthy adults over multiple years. In this chapter, we review advances in a novel sensing modality using radio frequency (RF) waves that can provide physiological measurements without skin contact in both lab and field environments. This chapter presents fundamentals of RF biosensing with experimental results of a new experimental bioradar platform illustrating the concepts. The focus is on new approaches to monitor heart motion and respiratory effort. Experimental results using both an articulated heart phantom and human subjects show that RF sensing modality can match the performance of state-of-the-art physiological monitoring devices in terms of retrieving features and statistics of clinical significance.


  1. 1.
    Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Medical and biological engineering and computing 44(12), 1031–1051 (2006)CrossRefGoogle Scholar
  2. 2.
    Akselrod, S., Gordon, D., Madwed, J.B., Snidman, N., Shannon, D., Cohen, R.: Hemodynamic regulation: investigation by spectral analysis. American Journal of Physiology-Heart and Circulatory Physiology 249(4), H867–H875 (1985)Google Scholar
  3. 3.
    Brovoll, S., Berger, T., Paichard, Y., Aardal, O., Lande, T.S., Hamran, S.E.: Time-lapse imaging of human heart motion with switched array uwb radar. IEEE Transactions on Biomedical Circuits and Systems 8(5), 704–715 (2014)CrossRefGoogle Scholar
  4. 4.
    Darbellay, G.A., Vajda, I., et al.: Estimation of the information by an adaptive partitioning of the observation space. IEEE Transactions on Information Theory 45(4), 1315–1321 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Droitcour, A., Lubecke, V., Lin, J., Boric-Lubecke, O.: A microwave radio for doppler radar sensing of vital signs. In: Microwave Symposium Digest, 2001 IEEE MTT-S International, vol. 1, pp. 175–178. IEEE (2001)Google Scholar
  6. 6.
    Ertin, E., Stohs, N., Kumar, S., Raij, A., al’Absi, M., Shah, S.: Autosense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pp. 274–287 (2011)Google Scholar
  7. 7.
    Fear, E.C., Bourqui, J., Curtis, C., Mew, D., Docktor, B., Romano, C.: Microwave breast imaging with a monostatic radar-based system: A study of application to patients. IEEE transactions on microwave theory and techniques 61(5), 2119–2128 (2013)CrossRefGoogle Scholar
  8. 8.
    Federal Communications Commission: Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. First report and order, ET Docket 98153 (2002)Google Scholar
  9. 9.
    Fisher III, J.W., Darrell, T.: Speaker association with signal-level audiovisual fusion. IEEE Transactions on Multimedia 6(3), 406–413 (2004)CrossRefGoogle Scholar
  10. 10.
    Fletcher, R., Dobson, K., Goodwin, M., Eydgahi, H., Wilder-Smith, O., Fernholz, D., Kuboyama, Y., Hedman, E., Poh, M., Picard, R.: icalm: Wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Transactions on Information Technology in Biomedicine 14(2), 215–223 (2010)Google Scholar
  11. 11.
    Gao, J., Ertin, E., Kumar, S., al’Absi, M.: Contactless sensing of physiological signals using wideband rf probes. In: 2013 Asilomar Conference on Signals, Systems and Computers, pp. 86–90. IEEE (2013)Google Scholar
  12. 12.
    Hailstone, J., Kilding, A.: Reliability and validity of the zephyrTM bioharnessTM to measure respiratory responses to exercise. Measurement in Physical Education and Exercise Science 15(4), 293–300 (2011)CrossRefGoogle Scholar
  13. 13.
    Haykin, S.: Communication systems. John Wiley & Sons (2008)Google Scholar
  14. 14.
    Henriksson, T., Klemm, M., Gibbins, D., Leendertz, J., Horseman, T., Preece, A., Benjamin, R., Craddock, I.: Clinical trials of a multistatic uwb radar for breast imaging. In: Antennas and Propagation Conference (LAPC), 2011 Loughborough, pp. 1–4. IEEE (2011)Google Scholar
  15. 15.
    Klemm, M., Craddock, I.J., Leendertz, J.A., Preece, A., Benjamin, R.: Radar-based breast cancer detection using a hemispherical antenna array–experimental results. IEEE Transactions on Antennas and Propagation 57(6), 1692–1704 (2009)CrossRefGoogle Scholar
  16. 16.
    Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Physical review E 69(6), 066,138 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lerma, C., Minzoni, A., Infante, O., José, M.V.: A mathematical analysis for the cardiovascular control adaptations in chronic renal failure. Artificial organs 28(4), 398–409 (2004)CrossRefGoogle Scholar
  18. 18.
    Lin, J.C.: Non-invasive microwave measurement of respiration. Proceedings of the IEEE 63 (1975)Google Scholar
  19. 19.
    Lin, J.C.: Microwave apexcardiography. IEEE Transactions MTT 27 (1979)Google Scholar
  20. 20.
    Lubecke, V., Boric-Lubecke, O., Awater, G., Ong, P., Gammel, P., Yan, R., Lin, J.: Remote sensing of vital signs with telecommunications signals. In: World Congress on Medical Physics and Biomedical Engineering (WC2000), Chicago IL (2000)Google Scholar
  21. 21.
    Lubecke, V., Boric-Lubecke, O., Beck, E.: A compact low-cost add-on module for doppler radar sensing of vital signs using a wireless communications terminal. In: Microwave Symposium Digest, 2002 IEEE MTT-S International, vol. 3, pp. 1767–1770. IEEE (2002)Google Scholar
  22. 22.
    Mantzel, W., Romberg, J.: Compressed subspace matching on the continuum. Information and Inference p. iav008 (2015)Google Scholar
  23. 23.
    Mokdad, A., Marks, J., Stroup, D., Gerberding, J.: Actual causes of death in the united states, 2000. JAMA: the journal of the American Medical Association 291(10), 1238 (2004)CrossRefGoogle Scholar
  24. 24.
    Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators. Physical Review E 52(3), 2318–2321 (1995)CrossRefGoogle Scholar
  25. 25.
    Nowogrodzki., M., Mawhinney, D.: Dual frequency heart rate monitor utilizing doppler radar. US Patent 4,513,748 (1985)Google Scholar
  26. 26.
    Pfeifer, M.A., Cook, D., Brodsky, J., Tice, D., Reenan, A., Swedine, S., Halter, J.B., Porte, D.: Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes 31(4), 339–345 (1982)CrossRefGoogle Scholar
  27. 27.
    Plarre, K., Raij, A., Hossain, S., Ali, A., Nakajima, M., Al’absi, M., Ertin, E., Kamarck, T., Kumar, S., Scott, M., et al.: Continuous inference of psychological stress from sensory measurements collected in the natural environment. In: International Conference on Information Processing in Sensor Networks (IPSN), pp. 97–108 (2011)Google Scholar
  28. 28.
    Poh, M., Swenson, N., Picard, R.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering 57(5), 1243–1252 (2010)CrossRefGoogle Scholar
  29. 29.
    Rothschild, M., Rothschild, A., Pfeifer, M.: Temporary decrease in cardiac parasympathetic tone after acute myocardial infarction. The American journal of cardiology 62(9), 637–639 (1988)CrossRefGoogle Scholar
  30. 30.
    Saul, J.P.: Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology 5(1), 32–37 (1990)Google Scholar
  31. 31.
    Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Transactions on Signal Processing 42(8), 2146–2157 (1994)CrossRefGoogle Scholar
  32. 32.
    Seals, J., Crowgey, S.R., Sharpe, S.: Electromagnetic vital signs monitor. Georgia Tech Research Institute Biomedical Division, Final Report Project A-3529–060 (1986)Google Scholar
  33. 33.
    Staderini, E.: Uwb radars in medicine. Aerospace and Electronic Systems Magazine, IEEE 17(1), 13–18 (2002)CrossRefGoogle Scholar
  34. 34.
    Suzuki, T., Sugiyama, M.: Sufficient dimension reduction via squared-loss mutual information estimation. Neural computation 25(3), 725–758 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Torkkola, K.: Feature extraction by non parametric mutual information maximization. The Journal of Machine Learning Research 3, 1415–1438 (2003)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wheeler, T., Watkins, P.: Cardiac denervation in diabetes. Bmj 4(5892), 584–586 (1973)CrossRefGoogle Scholar
  37. 37.
    Zito, D., Pepe, D., Mincica, M., Zito, F., De Rossi, D., Lanata, A., Scilingo, E., Tognetti, A.: Wearable system-on-a-chip uwb radar for contact-less cardiopulmonary monitoring: Present status. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 5274–5277. IEEE (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ju Gao
    • 1
  • Siddharth Baskar
    • 1
  • Diyan Teng
    • 1
  • Mustafa al’Absi
    • 2
  • Santosh Kumar
    • 3
  • Emre Ertin
    • 1
    Email author
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.University of Minnesota Medical SchoolDuluthUSA
  3. 3.Department of Computer ScienceUniversity of MemphisMemphisUSA

Personalised recommendations