Skip to main content

Task Design in a Paper and Pencil and Technological Environment to Promote Inclusive Learning: An Example with Polygonal Numbers

  • Chapter
  • First Online:
Mathematics and Technology

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

This paper discusses mathematical task design in a collaborative environment (the ACODESA teaching method), where activities with both paper and pencil and technology play a central role in learning mathematics. The use of problem situations under a sociocultural framework in the mathematics classroom requires careful mathematical task design to develop mathematical abilities in the classroom, promote diversified thinking, and achieve balance between pencil and paper and technological activities within an activity theory framework. While the task design approach examined in this paper is general, it is exemplified through mathematics teaching tasks appropriate for secondary school entry level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acronym which comes from the French abbreviation of Apprentissage collaboratif, Débat scientifique, Autoréflexion.

  2. 2.

    Touchscreen s are used more and more in schools (see the chapter on this matter in Bairral et al., this volume ). The paper and pencil component can be converted to the use of an electronic notebook in the production of (not exclusively) institutional representations. Currently, there are some electronic devices, such as notebooks, that can be connected to an iPad for simultaneous use with other applications .

References

  • Arcavi, A., & Hadas, N. (2000). Computer mediated learning: An example of an approach. International Journal of Computers for Mathematical Learning, 5(1), 25–45.

    Article  Google Scholar 

  • Bairral, M., Arzarello, F., & Assis, A. (in press). Domains of manipulation in touchscreen devices and some didactic, cognitive and epistemological implications for improving geometric thinking. In G. Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.), Mathematics and technology: A C.I.E.A.E.M. Sourcebook. Cham: Springer.

    Google Scholar 

  • Blum, W., Galbraith, P., Henn, H., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. The 14th ICMI study. New York: Springer.

    Google Scholar 

  • Brousseau, G. (1983). Les obstacles épistémologiques et les problèmes en mathématiques. Recherches en Didactique des Mathématiques, 4(2), 164–198.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. 1970–1990. In N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield (Eds. & Trans.). Dordrecht: Kluwer.

    Google Scholar 

  • Brownell, W.-A. (1942). Problem solving. In N. B. Henry (Ed.), The psychology of learning (41st Yearbook of the National Society for the Study of Education. Part 2, pp. 415–443). Chicago: University of Chicago Press.

    Google Scholar 

  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Belkapp Press.

    Google Scholar 

  • Cortés, C., & Hitt, F. (2012). POLY: Applet pour la construction des nombres polygonaux. Morelia: UMSNH.

    Google Scholar 

  • Dreyfus, T., & Hadas, N. (1996). Proof as answer to the question why. International Review on Mathematical Education, 96(1), 1–5.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissage intellectuels. Neuchâtel: Peter Lang.

    Google Scholar 

  • Duval, R. (2002). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt (Ed.), Representations and mathematics visualization (pp. 311–336). México: PME-NA and Cinvestav-IPN.

    Google Scholar 

  • Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen, & R. L. Punamäki (Eds.), Perspectives on activity theory (pp. 19–38). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1), 111–129.

    Article  Google Scholar 

  • Healy, L., & Sutherland, R. (1990). The use of spreadsheets within the mathematics classroom. International Journal of Mathematics Education in Science and Technology, 21(6), 847–862.

    Article  Google Scholar 

  • Hitt, F. (1994). Visualization, anchorage, availability and natural image: Polygonal numbers in computer environments. International Journal of Mathematics Education in Science and Technology, 25(3), 447–455.

    Article  Google Scholar 

  • Hitt, F. (2007). Utilisation de calculatrices symboliques dans le cadre d’une méthode d’apprentissage collaboratif, de débat scientifique et d’auto-réflexion. In M. Baron, D. Guin, & L. Trouche (Éds.), Environnements informatisés et ressources numériques pour l’apprentissage. conception et usages, regards croisés (pp. 65–88). Paris: Hermès.

    Google Scholar 

  • Hitt, F. (2013). Théorie de l’activité, interactionnisme et socioconstructivisme. Quel cadre théorique autour des représentations dans la construction des connaissances mathématiques ? Annales de Didactique et de Sciences Cognitives, 18, 9–27.

    Google Scholar 

  • Hitt, F., & González-Martín, A. S. (2015). Covariation between variables in a modelling process: The ACODESA (collaborative learning, scientific debate and self-reflexion) method. Educational Studies in Mathematics, 88(2), 201–219.

    Article  Google Scholar 

  • Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment with tasks designed from a Task-Technique-Theory perspective. International Journal of Computers for Mathematical Learning, 14(2), 121–152.

    Article  Google Scholar 

  • Hitt, F., Cortés, C., & Saboya, M. (2015). Integrating arithmetic and algebra in a collaborative learning and computational environment using ACODESA. In G. Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.), Mathematics and technology: A CIEAEM sourcebook. Cham: Springer.

    Google Scholar 

  • Hoyles, C. (1988). Girls and computers. London: University of London.

    Google Scholar 

  • Karsenty, R. (2003). What adults remember from their high school mathematics? The case of linear functions. Educational Studies in Mathematics, 51(1), 117–144.

    Google Scholar 

  • Kilpatrick, J. (1985). A retrospective account of the past twenty-five years of research on teaching matematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 1–16). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Legrand, M. (2001). Scientific debate in mathematics courses. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI Study (pp. 127–135). Dordrecht: Kluwer.

    Google Scholar 

  • Leontiev, A. (1978). Activity, counciousness, and personality. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Lesh, R., & Doerr, H. (2003). Beyond constructivism. Models and modeling perspectives on mathematics problem solving, learning, and teaching. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763–804). Greenwich: Information Age.

    Google Scholar 

  • Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. London: Addison-Wesley.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: Author.

    Google Scholar 

  • Prusak, N., Hershkowits, R., & Schwarz, B. (2013). Conceptual learning in a principled design problem solving environment. Research in Mathematics Education, 15(3), 266–285.

    Article  Google Scholar 

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Schoenfeld, A. (1985). Mathematical problem solving. New York: Academic.

    Google Scholar 

  • Sela, H., & Zaslavsky, O. (2007). Resolving cognitive conflict with peers. Is there a difference between two and four ? In Proceedings of PME 31, 4, 169–176, 8th–13th July, 2007. Seoul: PME.

    Google Scholar 

  • Simon, M. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

    Article  Google Scholar 

  • Simon, M., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91–104.

    Article  Google Scholar 

  • Thompson, P. (2002). Some remarks on conventions and representations. In F. Hitt (Ed.), Mathematics visualisation and representations (pp. 199–206). Mexico: PME-NA and Cinvestav-IPN.

    Google Scholar 

  • Varela, F.-J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge: MIT Press.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 10(23), 133–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Hitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hitt, F., Saboya, M., Cortés, C. (2017). Task Design in a Paper and Pencil and Technological Environment to Promote Inclusive Learning: An Example with Polygonal Numbers. In: Aldon, G., Hitt, F., Bazzini, L., Gellert, U. (eds) Mathematics and Technology. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-51380-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51380-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51378-2

  • Online ISBN: 978-3-319-51380-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics