e-Collaborative Forums as Mediators When Solving Algebraic Problems

Part of the Advances in Mathematics Education book series (AME)


In this chapter, we analyze Students when solving classic algebraic problems in a collaborative way, by using electronic forums to see the power of such a tool in a learning process. We used a task as an example to show the interactions appearing when using electronic forums as mediators on the reflective process of co-constructing algebraic ideas. It is found that the highest profile students not only participate actively in the task but they introduce more mathematical meaningful issues. Qualitative analysis shows that generalization methods are close to which it is regularly presented in face-to-face classrooms but reflection spontaneously emerges as a need for revealing the importance of exchanging the representations.


E-forums Algebra Problems Collaborative learning Co-construction 



This work was partially funded by the project EDU 2015-64646-P of the Ministry of Science and Competitiveness of Spain. We also receive funds from GREAV- and ARCE 2016.


  1. Ainley, J., & Luntley, M. (2007). The role of attention in expert classroom practice. Journal of Mathematics Teacher Education, 10(1), 3–22.CrossRefGoogle Scholar
  2. Albano, G., & Ferrari, P. L. (2013). Linguistic competence and mathematics learning: The tools of e-learning. Journal of e-Learning and Knowledge Society, 9(2), 27–41.Google Scholar
  3. Anderson, T. (Ed.). (2004). The theory and practice of online learning. Athabasca: Athabasca University.Google Scholar
  4. Bairral, M., & Giménez, J. (2004). Diversity of geometric practices in virtual discussion groups. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of PME 28 (Vol. 1, p. 281). Bergen: PME.Google Scholar
  5. Bairral, M., & Powell, A. (2013). Interlocution among problem solvers collaborating online: A case study with prospective teachers. Pro-Posições, 24(1), 1–16.CrossRefGoogle Scholar
  6. Borba, M., & Vilareal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, visualization and experimentation. Dordrecht: Kluwer.Google Scholar
  7. Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning – Interaction in classroom cultures. Hillsdale: Lawrence Erlbaum.Google Scholar
  8. Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective reflection. Journal for Research in Mathematics Education, 28(3), 258–277.CrossRefGoogle Scholar
  9. Coll, C. (2007, November 19–23). TIC y prácticas educativas: realidades y expectativas. Conference presented in the XXII Monographic Education Week, Santillana Foundation, Madrid.Google Scholar
  10. Coll, C., Engel, A., & Bustos, A. (2009). Distributed teaching presence and participants’ activity profiles: A theoretical approach to the structural analysis of asynchronous learning networks. European Journal of Education, 44(4), 521–538.CrossRefGoogle Scholar
  11. Coll, C., Bustos, A., Engel, A., de Gispert, I., & Rochera, M. J. (2013). Distributed educational influence and computer-supported collaborative learning. Digital Educational Review, 24, 23–42.Google Scholar
  12. Coll, C., Engel, A., & Bustos, A. (2015). Enhancing participation and learning in an online forum by providing information on educational influence. Infancia y Aprendizaje, 38(2), 368–401.CrossRefGoogle Scholar
  13. Engel, A., Coll, C., & Bustos, A. (2013). Distributed teaching presence and communicative patterns in asynchronous learning: Name versus reply networks. Computers & Education, 60(1), 184–196.CrossRefGoogle Scholar
  14. Gravemeijer, K. (2002). Emergent modeling as the basis for an instructional sequence on data analysis. In B. Phillips (Ed.), Proceedings of ICOTS-6 [CD-ROM]. Swinburne: Hawthorn.Google Scholar
  15. Jonassen, D. (2002). Engaging and supporting problem solving in online learning. Quarterly Review on Distance Education, 3(1), 1–13.Google Scholar
  16. Kieran, C., & Filloy, E. (1989). El aprendizaje del álgebra escolar desde una perspectiva psicológica. Enseñanza de las Ciencias, 7(3), 229–240.Google Scholar
  17. Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to roots of algebra. Milton Keynes: Open University.Google Scholar
  18. Murillo, J., & Marcos, G. (2011). Un modelo para potenciar y analizar las competencias geométricas y comunicativas en un entorno interactivo de aprendizaje. Enseñanza de las Ciencias, 27(2), 241–256.Google Scholar
  19. Rojano, T. (2003). Incorporación de entornos tecnológicos de aprendizaje a la cultura escolar: Proyecto de innovación educativa en matemáticas y ciencias en escuelas secundarias públicas de México. Revista Ibeoramericana de Educación, 33, 135–165.Google Scholar
  20. Rowntree, D. (1997). Making materials-based learning work: Principles, politics and practicalities. London: Kogan Page.Google Scholar
  21. Royo, P. (2012). Coconstrucción de conocimiento algebraico en el primer ciclo de la ESO mediante la participación en foros de conversación electrónicos. Unpublished PhD thesis, Universitat de Girona.Google Scholar
  22. Royo, P., & Giménez, J. (2008). The use of virtual environments for algebraic co-construction. In S. Turnau (Ed.), Handbook of mathematics teaching improvement: Professional practices that address PISA (pp. 75–82). Rzeszów: University of Rzeszów.Google Scholar
  23. Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 827–876). Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INS Sant Feliu de GuíxolsGironaSpain
  2. 2.Barcelona UniversityBarcelonaSpain

Personalised recommendations