Skip to main content

Biochemistry of Chlorophyll Biosynthesis in Photosynthetic Prokaryotes

  • Chapter
  • First Online:
Book cover Modern Topics in the Phototrophic Prokaryotes

Abstract

Chlorophylls (Chls) are tetrapyrrole pigments that are essential for photosynthesis, which supports almost all organisms on the planet. Thus, elucidation of the molecular mechanisms of Chl biosynthesis is a major biological challenge. Nearly 100 different Chls with differing ring structures and substituents are represented by Chls a, b, c, d, and f and bacteriochlorophylls a, b, c, d, e, and g. Phototrophic prokaryotes perform photosynthesis using specific sets of Chls that capture available light under the conditions of their natural habitats. For example, cyanobacteria grow photosynthetically in the top layers of water columns using Chl a, whereas purple bacteria perform anoxygenic photosynthesis using bacteriochlorophyll a in the deeper layers of the water columns. Extensive gene searches have been performed in photosynthetic prokaryotes since the 1990s, and the largely complete scheme of Chl biosynthetic pathways includes a core pathway that is conserved among all photosynthetic organisms and comprises diverse reactions for the production of a variety of Chls. With this framework of biosynthetic pathways, further studies of Chl biosynthesis are directed at understanding the physiological and biochemical aspects. The physiological aspects include elucidation of regulatory networks that are integrated with other cellular processes, and the biochemical aspects include elucidation of three-dimensional structures of Chl biosynthetic enzymes to understand molecular mechanisms. In this chapter, we describe the current investigations of molecular mechanisms of enzymes in the Mg branch focusing on the latter aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki R, Takeda T, Omata T, Ihara K, Fujita Y (2012) MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J Biol Chem 287:13500–13507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, Al-Karadaghi S, Willows RD, Hansson M (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18:3606–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay A, Elvitigala T, Welsh E, Stöckel J, Liberton M, Min H, Sherman LA, Pakrasi HB (2011) Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. MBio 2:e00214–e00211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beale SI (2005) Green genes gleaned. Trends Plant Sci 10:309–312

    Google Scholar 

  • Beale SI (2006) Biosynthesis of 5-aminolevulinic acid. In: Grimm B, Borra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 147–158

    Chapter  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Bollivar DW (2010) Putting metal in the middle. Structure 18:277–278

    Article  CAS  PubMed  Google Scholar 

  • Bollivar D, Suzuki J, Beatty J, Dobrowolski J, Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640

    Google Scholar 

  • Bröcker M, Wätzlich D, Uliczka F, Virus S, Saggu M, Lendzian F, Scheer H, Rüdiger W, Moser J, Jahn D (2008a) Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcus marinus. J Biol Chem 283:29873–29881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bröcker M, Virus S, Ganskow S, Heathcote P, Heinz D, Schubert W, Jahn D, Moser J (2008b) ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from Chlorobium tepidum mechanistically resembles nitrogenase catalysis. J Biol Chem 283:10559–10567

    Article  PubMed  CAS  Google Scholar 

  • Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 1847:968–985

    Article  CAS  PubMed  Google Scholar 

  • Burke DH, Alberti M, Hearst JE (1993a) The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ. J Bacteriol 175:2407–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DH, Hearst JE, Sidow A (1993b) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci U S A 90:7134–7138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzolai L, Gorst CM, Zhao ZH, Teng Q, Adams MW, La Mar GN (1995) 1H NMR investigation of the electronic and molecular structure of the fouriron cluster ferredoxin from the hyperthermophile Pyrococcus furiosus. Identification of Asp 14 as a cluster ligand in each of the four redox states. Biochemistry 34:11373–11384

    Google Scholar 

  • Canniffe DP, Jackson PJ, Hollingshead S, Dickman MJ, Hunter CN (2013) Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme. Biochem J 450:397–405

    Article  CAS  PubMed  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang X, Feng J, Chen Y, Fang Y, Zhao S, Zhao A, Zhang M, Liu L (2014) Structural insights into the catalytic mechanism of Synechocystis magnesium protoporphyrin IX O-methyltransferase (ChlM). J Biol Chem 289:25690–25698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Pu H, Fang Y, Wang X, Zhao S, Lin Y, Zhang M, Dai HE, Gong W, Liu L (2015a) Crystal structure of the catalytic subunit of magnesium chelatase. Nat Plants 1:15125

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Pu H, Wang X, Long W, Lin R, Liu L (2015b) Crystal structures of GUN4 in complex with porphyrins. Mol Plant 8:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Chen GE, Hitchcock A, Jackson PJ, Chaudhuri RR, Dickman MJ, Hunter CN, Canniffe DP (2016) Two unrelated 8-vinyl reductases ensure production of mature chlorophylls in Acaryochloris marina. J Bacteriol 198:1393–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew AG, Bryant DA (2007a) Characterization of a plant-like protochlorophyllide a divinyl reductase in green sulfur bacteria. J Biol Chem 282:2967–2975

    Article  CAS  PubMed  Google Scholar 

  • Chew AG, Bryant DA (2007b) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu. Rev. Microbiol. 61:113–129

    Article  CAS  PubMed  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Cornah JE, Smith AG (2009) Transformation of uroporphyrinogen III into protoheam. In: Warren MJ, Smith AG (eds) Tetrapyrroles: birth life and death. Springer, Austin, pp 74–88

    Chapter  Google Scholar 

  • Czarnecki O, Grimm B (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot 63:1675–1687

    Article  CAS  PubMed  Google Scholar 

  • Davison PA, Hunter CN (2011) Abolition of magnesium chelatase activity by the gun5 mutation and reversal by Gun4. FEBS Lett 585:183–186

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Article  CAS  PubMed  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y (2015) Chlorophylls. eLS (Encyclopedia of Life Sciences). Wiley, Chichester. doi:10.1002/9780470015902.a9780470000661.pub9780470015903

    Google Scholar 

  • Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits in vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588

    Google Scholar 

  • Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish K, Smith KM, Guilard R (eds) Chlorophylls and bilins: biosynthesis, synthesis, and degradation. Academic Press, San Diego, pp 109–156

    Google Scholar 

  • Fujita Y, Takahashi Y, Chuganji M, Matsubara H (1992) The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol 33:81–92

    CAS  Google Scholar 

  • Fujita Y, Takagi H, Hase T (1998) Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and -independent protochlorophyllide reduction systems in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 39:177–185

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Gibson LC, Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett 352:127–130

    Article  CAS  PubMed  Google Scholar 

  • Gibson LC, Willows RD, Kannangara CG, von Wettstein D, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, −I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci U S A 92:1941–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloe A, Pfennig N, Brockmann H, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109

    Article  CAS  PubMed  Google Scholar 

  • Gomez Maqueo Chew A, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c C-82 and C-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184

    Article  PubMed  CAS  Google Scholar 

  • Gough SP, Petersen BO, Duus JO (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci U S A 97:6908–6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruner I, Frädrich C, Böttger LH, Trautwein AX, Jahn D, Härtig E (2011) Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J Biol Chem 286:2017–2021

    Article  CAS  PubMed  Google Scholar 

  • Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci U S A 99:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada J, Saga Y, Yaeda Y, Oh-Oka H, Tamiaki H (2005) In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthetic pathway in green sulfur bacteria. FEBS Lett 579:1983–1987

    Article  CAS  PubMed  Google Scholar 

  • Harada J, Mizoguchi T, Tsukatani Y, Noguchi M, Tamiaki H (2012) A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2:671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M, Noguchi M, Tanaka A, Tamiaki H (2013) Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS One 8:e60026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada J, Mizoguchi T, Tsukatani Y, Yokono M, Tanaka A, Tamiaki H (2014) Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis. J Biol Chem 289:12716–12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H (2015) Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 98:1184–1198

    Article  CAS  PubMed  Google Scholar 

  • Heinz S, Liauw P, Nickelsen J, Nowaczyk M (2016) Analysis of photosystem II biogenesis in cyanobacteria. Biochim Biophys Acta 1857:274–287

    Article  CAS  PubMed  Google Scholar 

  • Heyes D, Ruban A, Wilks H, Hunter CN (2002) Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci U S A 99:11145–11150

    Google Scholar 

  • Heyes DJ, Hunter CN, van Stokkum IH, van Grondelle R, Groot ML (2003) Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nat Struct Biol 10:491–492

    Article  CAS  PubMed  Google Scholar 

  • Ho M-Y, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science. 353:aaf9178, doi:10.1126/science.aaf9178

  • Hollingshead S, Kopecná J, Jackson PJ, Canniffe DP, Davison PA, Dickman MJ, Sobotka R, Hunter CN (2012) Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J Biol Chem 287:27823–27833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingshead S, Kopečná J, Armstrong DR, Bučinská L, Jackson PJ, Chen GE, Dickman MJ, Williamson MP, Sobotka R, Hunter CN (2016) Synthesis of chlorophyll-binding proteins in a fully segregated Δycf54 strain of the cyanobacterium Synechocystis PCC 6803. Front Plant Sci 7:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunsperger HM, Randhawa T, Cattolico RA (2015) Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evol Biol 15:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H (2008) slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol 148:1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Tanaka A (2014) Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity. Plant Cell Physiol 55:593–603

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Yokono M, Tanaka R, Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 283:9002–9011

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Ohno T, Noji T, Yamakawa H, Komatsu H, Wada K, Kobayashi M, Miyashita H (2015) Harvesting far-red light by chlorophyll f in photosystems I and II of unicellular cyanobacterium strain KC1. Plant Cell Physiol 56:2024–2034

    Article  CAS  PubMed  Google Scholar 

  • Jahn D, Heinz DW (2009) Biosynthesis of 5-aminolevulinic acid. In: Warren MJ, Smith A (eds) Tetrapyrroles: birth, life and death. Springer, New York, pp 29–42

    Chapter  Google Scholar 

  • Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U (2014) Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008) Evidence of global chlorophyll d. Science 321:658

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Tanaka R, Sano S, Tanaka A, Hosaka H (2010) Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 107:16649–16654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiesel S, Wätzlich D, Lange C, Reijerse E, Bröcker MJ, Rüdiger W, Lubitz W, Scheer H, Moser J, Jahn D (2015) Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans. J Biol Chem 290:1141–1154

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim JS, Lee IH, Rhee HJ, Lee JK (2008) Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 283:3718–3730

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim JS, Rhee HJ, Lee JK (2009) Growth arrest of Synechocystis sp. PCC6803 by superoxide generated from heterologously expressed Rhodobacter sphaeroides chlorophyllide a reductase. FEBS Lett. 583:219–223

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim H, Lee JK (2016) The photoheterotrophic growth of bacteriochlorophyll synthase-deficient mutant of Rhodobacter sphaeroides is restored by I44F mutant chlorophyll synthase of Synechocystis sp. PCC 6803. J Microbiol Biotechnol 26:959–966

    Article  PubMed  Google Scholar 

  • Kobayashi K, Masuda T, Tajima N, Wada H, Sato N (2014) Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol Evol 6:2141–2155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch M, Breithaupt C, Kiefersauer R, Freigang J, Huber R, Messerschmidt A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komenda J, Sobotka R (2016) Cyanobacterial high-light-inducible proteins–protectors of chlorophyll-protein synthesis and assembly. Biochim Biophys Acta 1857:288–295

    Article  CAS  PubMed  Google Scholar 

  • Kunugi M, Takabayashi A, Tanaka A (2013) Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas. J Biol Chem 288:19330–19341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labesse G, Vidal-Cros A, Chomilier J, Gaudry M, Mornon JP (1994) Structural comparisons lead to the definition of a new superfamily of NAD(P)(H)-accepting oxidoreductases: the single-domain reductases/epimerases/dehydrogenases (the ‘RED’ family). Biochem J 304(Pt 1):95–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906

    Article  CAS  PubMed  Google Scholar 

  • Layer G, Moser J, Heinz DW, Jahn D, Schubert WD (2003) Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J 22:6214–6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Gräwert T, Quitterer F, Rohdich F, Eppinger J, Eisenreich W, Bacher A, Groll M (2010) Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG. J Mol Biol 404:600–610

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, Park YI, Lee SY, Pai HS (2013) Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. Plant Cell 25:3944–3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin RA (1976) Prochlorophyta as a proposed new division of algae. Nature 261:697–698

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Bryant DA (2011) Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J Biol Chem 286:22393–22402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D, Emanuelsson C, Hebert H, Willows RD, Hansson M, Lindahl M, Al-Karadaghi S (2010) ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. Structure 18:354–365

    Article  CAS  PubMed  Google Scholar 

  • Maresca JA, Gomez Maqueo Chew A, Ponsatí MR, Frigaard NU, Ormerod JG, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins BM, Svetlitchnaia T, Dobbek H (2005) 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction. Structure 13:817–824

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Fujita Y (2008) Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 7:1131–1149

    Article  CAS  PubMed  Google Scholar 

  • Menon BR, Hardman SJ, Scrutton NS, Heyes DJ (2016) Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). J Photochem Photobiol B 161:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamizaki K, Mizoguchi T, Goto T, Tamiaki H, Fujita Y (2008) Identification of two homologous genes, chlA I and chlA II , that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 283:2684–2692

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Mizoguchi T, Harada J, Tamiaki H (2006) Structural determination of dihydro- and tetrahydrogeranylgeranyl groups at the 17-propionate of bacteriochlorophylls-a. FEBS Lett 580:6644–6648

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Harada J, Tamiaki H (2012) Characterization of chlorophyll pigments in the mutant lacking 8-vinyl reductase of green photosynthetic bacterium Chlorobaculum tepidum. Bioorg Med Chem 20:6803–6810

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mgchelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci U S A 98:2053–2058

    Google Scholar 

  • Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A (2008) The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci U S A 105:15184–15189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley J, Quinn J, Eriksson M, Merchant S (2000) The crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19:2139–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M, Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation. Plant Cell 14:673–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser J, Lange C, Krausze J, Rebelein J, Schubert WD, Ribbe MW, Heinz DW, Jahn D (2013) Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. Proc Natl Acad Sci U S A 110:2094–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulin M, McCormac AC, Terry MJ, Smith AG (2008) Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proc Natl Acad Sci U S A 105:15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Hihara Y (2006) Photon flux density-dependent gene expression in Synechocystis sp. PCC 6803 is regulated by a small, redox-responsive, LuxR-type regulator. J Biol Chem 281:36758–36766

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N (2005) Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol 46:467–473

    Article  CAS  PubMed  Google Scholar 

  • Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Swem L, Bauer C, Fujita Y (2005) Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim Biophys Acta 1708:229–237

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006a) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis – reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Kitashima M, Inoue K, Fujita Y (2006b) Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 580:6151–6154

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Kitashima M, Ogawa T, Inoue K, Fujita Y (2008a) Biochemical analysis of two catalytic components of nitrogenase-like enzymes protochlorophyllide reductase and chlorophyllide a reductase from Rhodobacter capsulatus. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun: 14th international congress on photosynthesis. Springer, Dordrecht, pp 1107–1110

    Google Scholar 

  • Nomata J, Ogawa T, Kitashima M, Inoue K, Fujita Y (2008b) NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Lett. 582:1346–1350

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Kondo T, Itoh S, Fujita Y (2013) Nicotinamide is a specific inhibitor of dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, from Rhodobacter capsulatus. FEBS Lett 587:3142–3147

    Article  CAS  PubMed  Google Scholar 

  • Nomata J, Kondo T, Mizoguchi T, Tamiaki H, Itoh S, Fujita Y (2014) Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis. Sci Rep 4:5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomata J, Terauchi K, Fujita Y (2016) Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochem Biophys Res Commun 470:704–709

    Article  CAS  PubMed  Google Scholar 

  • Oster U, Bauer CE, Rüdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272:9671–9676

    Article  CAS  PubMed  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  CAS  PubMed  Google Scholar 

  • Ouchane S, Steunou A, Picaud M, Astier C (2004) Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J Biol Chem 279:6385–6394

    Article  CAS  PubMed  Google Scholar 

  • Ouchane S, Picaud M, Therizols P, Reiss-Husson F, Astier C (2007) Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J Biol Chem 282:7690–7699

    Article  CAS  PubMed  Google Scholar 

  • Pedersen M, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243

    Article  CAS  PubMed  Google Scholar 

  • Peter E, Salinas A, Wallner T, Jeske D, Dienst D, Wilde A, Grimm B (2009) Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. Biochim Biophys Acta 1787:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Peter E, Wallner T, Wilde A, Grimm B (2011) Comparative functional analysis of two hypothetical chloroplast open reading frames (ycf) involved in chlorophyll biosynthesis from Synechocystis sp. PCC6803 and plants. J Plant Physiol 168:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Pinta V, Picaud M, Reiss-Husson F, Astier C (2002) Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184:746–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci. 15:614–622

    Article  CAS  PubMed  Google Scholar 

  • Romão CV, Ladakis D, Lobo SA, Carrondo MA, Brindley AA, Deery E, Matias PM, Pickersgill RW, Saraiva LM, Warren MJ (2011) Evolution in a family of chelatases facilitated by the introduction of active site asymmetry and protein oligomerization. Proc Natl Acad Sci U S A 108:97–102

    Article  PubMed  Google Scholar 

  • Rüdiger W (2003) The last steps of chlorophyll synthesis. In: Kadish K, Smith KM, Guilard R (eds) Chlorophylls and bilins: biosynthesis, synthesis, and degradation. Academic Press, San Diego, pp 71–108

    Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP, Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 102:5886–5891

    Google Scholar 

  • Sarma R, Barney B, Hamilton T, Jones A, Seefeldt L, Peters J (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004–13015

    Article  CAS  PubMed  Google Scholar 

  • Saunders AH, Golbeck JH, Bryant DA (2013) Characterization of BciB: a ferredoxin-dependent 8-vinyl-protochlorophyllide reductase from the green sulfur bacterium Chloroherpeton thalassium. Biochemistry 52:8442–8451

    Article  CAS  PubMed  Google Scholar 

  • Sawicki A, Willows RD (2010) BchJ and BchM interact in a 1: 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. FEBS J 277:4709–4721

    Article  CAS  PubMed  Google Scholar 

  • Scheer H (2006) An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H, (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Structure of ADP × AIF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–376

    Article  CAS  PubMed  Google Scholar 

  • Schlicke H, Hartwig AS, Firtzlaff V, Richter AS, Glässer C, Maier K, Finkemeier I, Grimm B (2014) Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling. Mol Plant 7:1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert HL, Erskine PT, Cooper JB (2009) 5-Aminolevulinic acid dehydratase, porphobilinogen deaminase and uroporphyrinogen III synthase. In: Warren MJ, Smith AG (eds) Tetrapyrroles: birth life and death. Springer, Austin, pp 43–73

    Chapter  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:R567–R574

    Article  CAS  PubMed  Google Scholar 

  • Shepherd M, Reid JD, Hunter CN (2003) Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J 371:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd M, McLean S, Hunter CN (2005) Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J 272:4532–4539

    Article  CAS  PubMed  Google Scholar 

  • Shioi Y, Doi M, Böddi B (1988) Selective inhibition of chlorophyll biosynthesis by nicotinamide. Arch Biochem Biophys 267:69–74

    Article  CAS  PubMed  Google Scholar 

  • Shpilyov AV, Zinchenko VV, Shestakov SV, Grimm B, Lokstein H (2005) Inactivation of the geranylgeranyl reductase (ChlP) gene in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1706:195–203

    Article  CAS  PubMed  Google Scholar 

  • Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E (2009) Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant Cell Physiol 50:1507–1521

    Article  CAS  PubMed  Google Scholar 

  • Sirijovski N, Lundqvist J, Rosenbäck M, Elmlund H, Al-Karadaghi S, Willows RD, Hansson M (2008) Substrate-binding model of the chlorophyll biosynthetic magnesium chelatase BchH subunit. J Biol Chem 283:11652–11660

    Article  CAS  PubMed  Google Scholar 

  • Skinner JS, Timko MP (1998) Loblolly pine (Pinus taeda L.) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39:795–806

    Article  CAS  PubMed  Google Scholar 

  • Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichy M, Grimm B, Wilde A (2008) Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol Chem 283:25794–25802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steccanella V, Hansson M, Jensen PE (2015) Linking chlorophyll biosynthesis to a dynamic plastoquinone pool. Plant Physiol Biochem 97:207–216

    Article  CAS  PubMed  Google Scholar 

  • Stenbaek A, Jensen PE (2010) Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853–859

    Article  CAS  PubMed  Google Scholar 

  • Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE (2008) NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase. FEBS Lett 582:2773–2778

    Article  CAS  PubMed  Google Scholar 

  • Suzuki JY, Bauer CE (1995a) A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci U S A 92:3749–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki JY, Bauer CE (1995b) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 270:3732–3740

    Article  CAS  PubMed  Google Scholar 

  • Sytina O, Heyes D, Hunter C, Alexandre M, van Stokkum I, van Grondelle R, Groot M (2008) Conformational changes in an ultrafast light-driven enzyme determine catalytic activity. Nature 456:1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Tamiaki H, Teramura M, Tsukatani Y (2016) Reduction processes in biosynthesis of chlorophyll molecules: Chemical implications of enzymatically regio- and stereoselective hydrogenation in the late steps of their biosynthetic pathway. Bull Chem Soc Jpn 89:161–173

    Article  CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Tsuji H (1981) Changes in chlorophyll a and b Content in dark-incubated cotyledons excised from illuminated seedlings: The effect of calcium. Plant Physiol 68:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Tsuji H (1982) Calcium-induced formation of chlorophyll b and light-harvesting chlorophyll a/b protein complex in cucumber cotyledons in the dark. Biochim. Biophys. Acta 680:265–270

    Article  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci U S A 95:12719–12723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang KH, Wen J, Li X, Blankenship RE (2009) Role of the AcsF protein in Chloroflexus aurantiacus. J Bacteriol 191:3580–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramura M, Harada J, Mizoguchi T, Yamamoto K, Tamiaki H (2016) In vitro assays of BciC showing C132-demethoxycarbonylase activity requisite for biosynthesis of chlorosomal chlorophyll pigments. Plant Cell Physiol 57:1048–1057

    Article  CAS  PubMed  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HC, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162

    Article  CAS  PubMed  Google Scholar 

  • Tottey S, Block MA, Allen M, Westergren T, Albrieux C, Scheller HV, Merchant S, Jensen PE (2003) Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide. Proc Natl Acad Sci U S A 100:16119–16124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H (2013a) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep 3:1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukatani Y, Yamamoto H, Mizoguchi T, Fujita Y, Tamiaki H (2013b) Completion of biosynthetic pathways for bacteriochlorophyll g in Heliobacterium modesticaldum: the C8-ethylidene group formation. Biochim Biophys Acta 1827:1200–1204

    Google Scholar 

  • Ueda M, Tanaka A, Sugimoto K, Shikanai T, Nishimura Y (2014) chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome Biol Evol 6:620–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdecia M, Larkin R, Ferrer J, Riek R, Chory J, Noel J (2005) Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol 3:e151

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA (2012) Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll”. Front Microbiol 3:298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada K, Yamaguchi H, Harada J, Niimi K, Osumi S, Saga Y, Oh-Oka H, Tamiaki H, Fukuyama K (2006) Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism. J Mol Biol 360:839–849

    Article  CAS  PubMed  Google Scholar 

  • Wätzlich D, Bröcker M, Uliczka F, Ribbe M, Virus S, Jahn D, Moser J (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilde A, Mikolajczyk S, Alawady A, Lokstein H, Grimm B (2004) The gun4 gene is essential for cyanobacterial porphyrin metabolism. FEBS Lett 571:119–123

    Article  CAS  PubMed  Google Scholar 

  • Wilks H, Timko M (1995) A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci U S A 92:724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willows RD, Hansson M (2003) Mechanism, structure, and regulation of magnesium chelatase. In: Kadish KM, Smith KM, Guilard R (eds) The Porphyrin Handbook, Chlorophylls and bilins: biosynthesis, synthesis, and degradation, vol 13. Academic Press, San Diego, pp 1–47

    Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci U S A 95:14851–14856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Kato M, Yamanashi K, Fujita Y (2014) Reconstitution of a sequential reaction of two nitrogenase-like enzymes in the bacteriochlorophyll biosynthetic pathway of Rhodobacter capsulatus. Biochem Biophys Res Commun 448:200–205

    Article  CAS  PubMed  Google Scholar 

  • Yamanashi K, Minamizaki K, Fujita Y (2015) Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria. Biochem Biophys Res Commun 463:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZM, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172:5001–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Liu J, Wen X, Lu C (2015) Molecular mechanism of photosystem I assembly in oxygenic organisms. Biochim Biophys Acta 1847:838–848

    Article  CAS  PubMed  Google Scholar 

  • Yen HC, Marrs B (1976) Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol 126:619–629

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jiro Harada for valuable comments on BChl biosynthesis. We also thank Hitoshi Tamiaki, Yusuke Tsukatani, Ayumi Tanaka, and Kazuki Terauchi for valuable discussions. This work was supported by the Japan Society for the Promotion of Science (JSPS) [Grants-in-Aid for Scientific Research Nos 23370020, 15H04387, 15H01397, and Specially Promoted Research 23000007] and the Japan Science and Technology Agency (JST) [the Advanced Low Carbon Technology Research and Development Program (ALCA)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fujita, Y., Yamakawa, H. (2017). Biochemistry of Chlorophyll Biosynthesis in Photosynthetic Prokaryotes. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-51365-2_3

Download citation

Publish with us

Policies and ethics