Skip to main content

Introduction

  • Chapter
  • First Online:
Index Modulation for 5G Wireless Communications

Part of the book series: Wireless Networks ((WN))

Abstract

The fourth generation (4G) standardization and the ongoing worldwide deployment of 4G cellular network is maturing. However, with an explosion of wireless mobile devices and services, there are still some challenges that the 4G physical layer technologies cannot be accommodated. Technologists worldwide, thereby, have begun searching the 5G physical layer technologies to meet the anticipated demands in the 2020 era. The recently emerging index modulation appears as a promising candidate. In this chapter, first, we briefly address the 5G demand and identify key challenges. Then, we introduce the history of index modulation, mainly focusing on the space, space-time, and frequency domains realizations. Finally, the organization of this monograph is given at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Tarokh, H. Jafarkhani, A.R. Calderbank, Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory 45, 1456–1467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Tarokh, N. Seshadri, A.R. Calderbank, Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inform. Theory 44, 744–765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Wolniansky, G. Foschini, G. Golden, R. Valenzuela, V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, in Proceedings of Int’l Symp. Signals, Syst., Electron., Pisa, Italy, 1998, pp. 295–300

    Google Scholar 

  4. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Area Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  5. T.C. Group, Smart 2020: enabling the low carbon economy in the information age (2008)

    Google Scholar 

  6. C.-X. Wang, X. Gao, X. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  7. D.A. Basnayaka, M. Di Renzo, H. Haas, Massive but few active MIMO. IEEE Tran. Veh. Technol. 65(9), 6861–6877 (2016)

    Google Scholar 

  8. Y. Chau, S.CH. Yu, Space modulation on wireless fading channels. Proc. IEEE Veh. Technol. Conf. Fall 3, 1668–1671 (2001)

    Google Scholar 

  9. H. Haas, E. Costa, E. Schultz, Increasing spectral efficiency by data multiplexing using antennas arrays. Proc. IEEE Int. Symp. Personal, Indoor, Mobile Radio Commun. 2, 610–613 (2002)

    Google Scholar 

  10. S. Song, Y. Yang, Q. Xiong, K. Xie, B. Jeong, B. Jiao, A channel hopping technique I: theoretical studies on band efficiency and capacity. Proc. IEEE Int. Conf. Commun., Circuits Syst. 1, 229–233 (2004)

    Google Scholar 

  11. Y. Yang, B. Jiao, Information-guided channel-hopping for high data rate wireless communication. IEEE Commun. Lett. 12(4), 225–227 (2008)

    Article  Google Scholar 

  12. R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, S. Yun, Spatial modulation. IEEE Trans. Veh. Tech. 57(4), 2228–2242 (2008)

    Article  Google Scholar 

  13. J. Jeganathan, A. Ghrayeb, L. Szczecinski, Spatial modulation: optimal detection and performance analysis. IEEE Commun. Lett. 12(8), 545–547 (2008)

    Article  Google Scholar 

  14. J. Jeganathan, A. Ghrayeb, L. Szczecinski, A. Ceron, Space shift keying modulation for MIMO channels. IEEE Trans. Wirel. Commun. 8(7), 3692–3703 (2009)

    Article  Google Scholar 

  15. M. Renzo, H. Haas, P. Grant, Spatial modulation for multiple-antenna wireless systems: a survey. IEEE Commun. Mag. 49(12), 182–191 (2011)

    Article  Google Scholar 

  16. J. Jeganathan, A. Ghrayeb, L. Szczecinski, Generalized space shift keying modulation for MIMO Channels, in Proceedings of IEEE Symposium on Personal, Indoor and Mobile Radio Communications, French Riviera, France, Sept. 2008, pp. 1–5

    Google Scholar 

  17. A. Younis, N. Serafimovski, R. Mesleh, H. Haas, Generalised spatial modulation, in Proceedings if 2010 Signals, Systems, and Computers, pp. 1498–1502

    Google Scholar 

  18. J. Wang, S. Jia, J. Song, Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Trans. Wirel. Commun. 11(4), 1605–1615 (2012)

    Article  Google Scholar 

  19. R. Mesleh, S. Ikki, H.M. Aggoune, Quadrature spatial modulation. IEEE Trans. Veh. Technol. 64(6), 2738–2742 (2015)

    Article  Google Scholar 

  20. C.-C. Cheng, H. Sari, S. Sezginer, Y. Su, Enhanced spatial modulation with multiple signal constellations. IEEE Trans. Commun. 63(6), 2237–2248 (2015)

    Article  Google Scholar 

  21. Y. Yang, S. Aissa, Information-guided transmission in decode-and-forward relaying systems: spatial exploitation and throughput enhancement. IEEE Trans. Wirel. Commun. 10(7), 2341–2351 (2011)

    Article  Google Scholar 

  22. L. Yang, Transmitter preprocessing aided spatial modulation for multiple-input multiple-output systems, in Proceedings of 73rd IEEE Vehicular Technology Conference (VTC Spring), May 2011, pp. 1–5

    Google Scholar 

  23. R. Zhang, L. Yang, L. Hanzo, Generalised pre-coding aided spatial modulation. IEEE Trans. Wirel. Commun. 12(11), 5434–5443 (2013)

    Article  Google Scholar 

  24. J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, M.H. Lee, Generalised pre-coding aided quadrature spatial modulation. IEEE Trans. Veh. Technol. (2016, in press)

    Google Scholar 

  25. A. Stavridis, D. Basnayaka, S. Sinanovic, M. Di Renzo, H. Haas, A virtual MIMO dual-hop architecture based on hybrid spatial modulation. IEEE Trans. Commun. 62(9), 3161–3179 (2014)

    Article  Google Scholar 

  26. N. Serafimovski, M. Renzo, S. Sinanovic, R. Mesleh, H. Haas, Fractional bit encoded spatial modulation (FBE-SM). IEEE Commun. Lett. 14(5), 429–431 (2010)

    Article  Google Scholar 

  27. Y. Yang, S. Aissa, Bit-padding information guided channel hopping. IEEE Commun. Lett. 15(2), 163–165 (2011)

    Article  Google Scholar 

  28. Y. Yang, S. Aissa, Information guided channel hopping with an arbitrary number of transmit antennas. IEEE Commun. Lett. 16(10), 1552–1555 (2012)

    Article  Google Scholar 

  29. R. Rajashekar, K.V.S. Hari, L. Hanzo, Antenna selection in spatial modulation systems. IEEE Commun. Lett. 17(3), 521–524 (2013)

    Article  Google Scholar 

  30. C. Liu, M. Ma, Y. Yang, B. Jiao, Optimal spatial-domain design for spatial modulation capacity maximization. IEEE Commun. Lett. 20(6), 1092–1095 (2013)

    Article  Google Scholar 

  31. M. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, L. Hanzo, Spatial modulation for generalized MIMO: challenges, opportunities and implementation. Proc. IEEE 102(1), 56–103 (2014)

    Article  Google Scholar 

  32. P. Yang, M. Di Renzo, Y. Xiao, S. Li, L. Hanzo, Design guidelines for spatial modulation. IEEE Commun. Surv. Tuts. 17(1), 6–26 (2015)

    Google Scholar 

  33. S. Sugiura, S. Chen, L. Hanzo, Coherent and differential space-time shift keying: a dispersion matrix approach. IEEE Trans. Commun. 58(11), 3219–3230 (2010)

    Article  Google Scholar 

  34. S. Sugiura, S. Chen, L. Hanzo, Generalized space-time shift keying designed for flexible diversity-, multiplexing- and complexity-tradeoffs. IEEE Trans. Wirel. Commun. 10(4), 1144–1153 (2011)

    Article  Google Scholar 

  35. C. Xu, S. Sugiura, S.X. Ng, Lajos Hanzo, Reduced-complexity soft-decision aided space-time shift keying. IEEE Signal Process. Lett. 18(10), 547–550 (2011)

    Article  Google Scholar 

  36. S. Sugiura, C. Xu, S.X. Ng, L. Hanzo, Reduced-complexity coherent versus non-coherent QAM-aided space-time shift keying. IEEE Trans. Commun. 59(11), 3090–3101 (2011)

    Article  Google Scholar 

  37. P. Yang, Y. Xiao, L. Li, Q. Tang, S. Li, An improved matched-filter based detection algorithm for space-time shift keying systems. IEEE Signal Process. Lett. 19(5), 271–274 (2012)

    Article  Google Scholar 

  38. S. Sugiura, C. Xu, S.X. Ng, L. Hanzo, Reduced-complexity iterative-detection-aided generalized space-time shift keying. IEEE Trans. Veh. Technol. 61(8), 3656–3664 (2012)

    Article  Google Scholar 

  39. R. Mesleh, M.D. Renzo, H. Haas, P.M. Grant, Trellis coded spatial modulation. IEEE Trans. Wirel. Commun. 9(7), 2349–2361 (2010)

    Article  Google Scholar 

  40. E. Basar, U. Aygolu, E. Panayirci, H.V. Poor, New trellis code design for spatial modulation. IEEE Trans. Wirel. Commun. 10(8), 2670–2680 (2011)

    Article  Google Scholar 

  41. E. Basar, U. Aygolu, E. Panayirci, H.V. Poor, Space-time block coded spatial modulation. IEEE Trans. Commun. 59(3), 823–832 (2011)

    Article  MATH  Google Scholar 

  42. X. Li, L. Wang, High rate space-time block coded spatial modulation with cyclic structure. IEEE Commun. Lett. 18(4), 532–535 (2014)

    Article  Google Scholar 

  43. L. Wang, Z. Chen, X. Wang, A space-time block coded spatial modulation from \((n, k)\) error correcting code. IEEE Wirel. Commun. Lett. 3(1), 54–57 (2014)

    Article  Google Scholar 

  44. K.G. Unnikrishnan, B.S. Rajan, Space-time coded spatial modulated physical layer network coding for two-way relaying. IEEE Trans. Commun. 14(1), 331–342 (2015)

    Google Scholar 

  45. C. Jeon, J. Lee, Multi-strata space-time coded spatial modulation. IEEE Commun. Lett. 19(11), 1945–1948 (2015)

    Article  Google Scholar 

  46. Y. Bian, M. Wen, X. Cheng, H.V. Poor, B. Jiao, A differential scheme for spatial modulation, in Proceedings of IEEE Global Communications Conference Atlanta, USA, Dec 2013

    Google Scholar 

  47. Y. Bian, X. Cheng, M. Wen, L. Yang, H.V. Poor, B. Jiao, Differential spatial modulation. IEEE Trans. Veh. Technol. 64(7), 3262–3268 (2015)

    Google Scholar 

  48. M. Wen, Z. Ding, X. Cheng, Y. Bian, Performance analysis of Differential spatial modulation with two transmit antennas. IEEE Commun. Lett. 18(3), 475–478 (2014)

    Article  Google Scholar 

  49. L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, W. Xiang, A low-complexity detection scheme for differential spatial modulation. IEEE Commun. Lett. 19(9), 1516–1519 (2015)

    Article  Google Scholar 

  50. M. Wen, X. Cheng, Y. Bian, H.V. Poor, A low-complexity near-ML differential spatial modulation detector. IEEE Signal Process. Lett. 22(11), 1834–1838 (2015)

    Article  Google Scholar 

  51. Z. Li, X. Cheng, S. Han, M. Wen, L. Yang, B. Jiao, A low-complexity optimal sphere decoder for differential spatial modulation, in Proceedings of IEEE Global Communications Conference San Diego, USA, Dec 2015

    Google Scholar 

  52. W. Zhang, Q. Yin, H. Deng, Differential full diversity spatial modulation and its performance analysis with two transmit antennas. IEEE Commun. Lett. 19(4), 677–680 (2015)

    Article  Google Scholar 

  53. R. Rajashekar, N. Ishikawa, S. Sugiura, K.V.S. Hari, L. Hanzo, Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation. IEEE Trans. Veh. Technol. (2016, in press)

    Google Scholar 

  54. J. Li, M. Wen, X. Cheng, Y. Yan, S. Song, M.H. Lee, Differential spatial modulation with Gray coded antenna activation order. IEEE Commun. Lett. 20(6), 1100–1103 (2016)

    Article  Google Scholar 

  55. M. Zhang, M. Wen, X. Cheng, L. Yang, Pre-coding aided differential spatial modulation, in Proceedings of IEEE Global Communications Conference, Dec. 2015, pp. 1–6

    Google Scholar 

  56. Z. Li, X. Cheng, M. Wen, L. Yang, B. Jiao, Differential spatial modulated OFDM in underwater acoustic communications, in Proceedings of IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Guilin, China, Aug. 2014, pp. 913–918

    Google Scholar 

  57. M. Xu, M. Wen, Y. Feng, F. Ji, W. Pan, A novel self-interference cancellation scheme for full duplex with differential spatial modulation, in Proceedings of IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2015), Hong Kong. China, Sept. 2015, pp. 482–486

    Google Scholar 

  58. M. Zhang, M. Wen, X. Cheng, L. Yang, A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation. IEEE Trans. Wirel. Commun. 15(9), 6356–6370 (2016)

    Google Scholar 

  59. R. Padovani, J. Wolf, Coded phase/frequency modulation. IEEE Trans. Commun. COM-34(5) (1986)

    Google Scholar 

  60. S. Hong, M. Sagong, C. Lim, S. Cho, K. Cheun, K. Yang, Frequency and quadrature-amplitude modulation for downlink cellular OFDMA networks. IEEE J. Sel. Area Commun. 32(6), 1256–1267 (2014)

    Article  Google Scholar 

  61. R.A. Alhiga, H. Haas, Subcarrier-index modulation OFDM, in Proceedings of IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Tokyo, Japan, Sept. 2009, pp. 177–181

    Google Scholar 

  62. D. Tsonev, S. Sinanovic, H. Haas, Enhanced subcarrier index modulation (SIM) OFDM, in Proceedings of IEEE Global Communications Conference (GLOBECOM) Workshops, Houston, TX, USA, Dec. 2011, pp. 728–732

    Google Scholar 

  63. E. Basar, U. Aygolu, E. Panayirci, H.V. Poor, Orthogonal frequency division multiplexing with index modulation, in Proceedings of IEEE Global Communications Conference (GLOBECOM), Anahem, CA, USA, Dec. 2012, pp. 4741–4746

    Google Scholar 

  64. E. Basar, U. Aygolu, E. Panayirci, H.V. Poor, Orthogonal frequency division multiplexing with index modulation. IEEE Trans. Signal Process. 61(22), 5536–5549 (2013)

    Article  MathSciNet  Google Scholar 

  65. P.K. Frenger, N.A.B. Svensson, Parallel combinatory OFDM signaling. IEEE Trans. Commun. 47(4), 558–567 (1999)

    Article  Google Scholar 

  66. M. Wen, Y. Li, X. Cheng, L. Yang, Index modulated OFDM with ICI self-cancellation in underwater acoustic communications, in Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, Nov. 2014, pp. 338–342

    Google Scholar 

  67. B. Zheng, F. Chen, M. Wen, F. Ji, H. Yu, Y. Liu, Low-complexity ML detector and performance analysis for OFDM with in-phase/quadrature index modulation. IEEE Commun. Lett. 19(11), 1893–1896 (2015)

    Article  Google Scholar 

  68. X. Cheng, M. Wen, L. Yang, Y. Li, Index modulated OFDM with interleaved grouping for V2X communications, in Proceedings of IEEE ITSC, Qingdao, China, Oct. 2014, pp. 1097–1104

    Google Scholar 

  69. M. Wen, X. Cheng, M. Ma, B. Jiao, H.V. Poor, On the achievable rate of OFDM with index modulation. IEEE Trans. Signal Process. 64(8), 1919–1932 (2016)

    Article  MathSciNet  Google Scholar 

  70. M. Wen, X. Cheng, L. Yang, Optimizing the energy efficiency of OFDM with index modulation, in Proceedings of IEEE ICCS, Macau, China, Nov. 2014, pp. 31–35

    Google Scholar 

  71. Y. Ko, A tight upper bound on bit error rate of joint OFDM and multi-carrier index keying. IEEE Commun. Lett. 18(10), 1763–1766 (2014)

    Article  Google Scholar 

  72. Q. Ma, P. Yang, Y. Xiao, H. Bai, S. Li, Error probability analysis of OFDM-IM with carrier frequency offset. IEEE Commun. Lett. 20(12), 2434–2437 (2016)

    Google Scholar 

  73. M. Wen, X. Cheng, L. Yang, Y. Li, X. Cheng, F. Ji, Index modulated OFDM for underwater acoustic communications. IEEE Commun. Mag. 54(5), 132–137 (2016)

    Article  Google Scholar 

  74. Y. Li, M. Zhang, X. Cheng, M. Wen, L. Yang, Index modulated OFDM with intercarrier interference cancellation, in Proceedings of IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 2016

    Google Scholar 

  75. Y. Li, M. Wen, L. Yang, Index modulated OFDM with ICI self-cancellation for V2X communications, in Proceedings of IEEE International Conference on Computing, Networking and Communications (ICNC 2016), Hawaii, HI, USA, Feb. 2016, pp. 1–5

    Google Scholar 

  76. Q. Ma, Y. Xiao, L. Dan, P. Yang, L. Peng, S. Li, Subcarrier allocation for OFDM with index modulation. IEEE Commun. Lett. 20(7), 1469–1472 (2016)

    Google Scholar 

  77. A.I. Siddiq, Low complexity OFDM-IM detector by encoding all possible subcarrier activation patterns. IEEE Commun. Lett. 20(3), 446–449 (2016)

    Article  Google Scholar 

  78. E. Basar, OFDM with index modulation using coordinate interleaving. IEEE Wirel. Commun. Lett. 4(4), 381–384 (2015)

    Article  Google Scholar 

  79. R. Fan, Y.J. Yu, Y.L. Guan, Generalization of orthogonal frequency division multiplexing with index modulation. IEEE Trans. Wirel. Commun. 14(10), 5350–5359 (2015)

    Article  Google Scholar 

  80. E. Basar, On multiple-input multiple-output OFDM with index modulation for next generation wireless networks. IEEE Trans. Signal Process. 64(15), 3868–3878 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaowen Wen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wen, M., Cheng, X., Yang, L. (2017). Introduction. In: Index Modulation for 5G Wireless Communications. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-51355-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51355-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51354-6

  • Online ISBN: 978-3-319-51355-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics