Skip to main content

Integrating an Offshore Wind Farm to an Existing Utility Power Network via an HVDC Collection Grid: Alternative Topology

  • Chapter
  • First Online:
Book cover Handbook of Distributed Generation

Abstract

This study proposes an alternative method for integrating an offshore wind farm into the conventional alternating current (AC) power network. The output power port of wind farm consists of a direct current (DC) collector . The offshore wind farm is integrated with a photovoltaic (PV) source and a battery storage system (BSS). The BSS and PV are needed for counteracting the intermittent power generation from offshore wind farm. The conventional AC power network consists largely of AC loads including few DC loads which are fed through the power converters. It is true that the power converters are the main sources of voltage/current harmonic distortion into the power system, thus affecting significantly the power quality. In this study, an interconnected AC and DC power networks is considered, which feed power separately to AC and low-voltage DC loads. The interchange of power between high-voltage DC link and low-voltage DC loads is facilitated through an automatic adapter. The technical concept of the automatic adapter is introduced in this chapter. The interchange of power between the AC and DC networks is facilitated through a bidirectional AC–DC voltage source converter (VSC). The proposed distributed power network topology reduces the need for large number of power converter into the conventional AC power network to feed DC loads, thus reducing the presence of voltage/current harmonic or ripple and also improving the AC network efficiency. Details of operation of the proposed distributed power network topology is analysed and discussed. The mechanism to control the active and reactive power is clearly explained. To verify the effectiveness of the proposed power network topology, intensive simulations are carried out using the Power Simulator (PSim) software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenpeace (2005) “The environmental impacts of coal” climate, New Zealand. www.greenpeace.org/new-zealand

  2. Wakileh GJ (2001) Power systems harmonics fundamental, analysis and filter design. Springer, New York

    Google Scholar 

  3. Andersen BR, Xu L (2004) Hybrid HVDC system for power transmission to island networks. IEEE Trans Power Deliv 19(4):1884–1890

    Article  Google Scholar 

  4. Chen X, Sun H, Wen J, Lee W-J, Yuan X, Li N, Yao L (2011) Integrating wind farm to the grid using hybrid multi-terminal HVDC technology. IEEE Trans Ind Appl 47(2):965–972

    Article  Google Scholar 

  5. Mogstad AB, Molinas M (2008) Power collection and integration on the electric grid from offshore wind parks. Nordic workshop on power and industrial electronics (NORPIE), 9–11 June 2008

    Google Scholar 

  6. De Prada MG, Dominguez-Garcia JL, Diaz-Gonzalez F, Aragues-Peñalba M, Gomis-Bellmunt O (2015) Feasibility analysis of offshore wind power plants with DC collection grid. Renew Energy 78:467–477

    Article  Google Scholar 

  7. Xiang W, Hua Y, Wen J, Yao M, Li N (2014) Research on fast solid state DC breaker based on a natural current zero-crossing point. J Mod Power Syst Clean Energy 2(1):30–38

    Article  Google Scholar 

  8. Yang J, Fletcher JE, O’Reilly J (2010) Multiterminal DC wind farm collection grid internal fault analysis and protection design. IEEE Trans Power Deliv 25(4):2308–2318

    Article  Google Scholar 

  9. Tang L, Ooi B-T (2007) Locating and isolating DC faults in multi terminal DC systems. IEEE Trans Power Deliv 22(3):1877–1884

    Article  Google Scholar 

  10. Wu YK, Lee CY, Shu GH (2011) Taiwan’s first large-scale offshore wind farm connection—a real project case study with a comparison of wind turbine. IEEE Trans Ind Appl 47(3):1461–1469

    Article  Google Scholar 

  11. Berenguel D, de Prada M, Bellmunt OG, Martins M (2013) Electrical interconnection options analysis for offshore wind farms. In: Europe’s premier wind energy event, EWEA, Vienna, Austria, 2013

    Google Scholar 

  12. Varela GQ, Ault GW, Lara OA, McDonald JR (2007) Electrical collector system options for large offshore wind farms. IET Renew Power Gener 1(2):107–114

    Article  Google Scholar 

  13. Chou CJ, Wu YK, Han GY, Lee CY (2012) Comparative evaluation of the HVDC and HVAC links integrated in a large offshore wind farm—an actual case study in Taiwan. IEEE Trans Ind Appl 48(5):1639–1648

    Article  Google Scholar 

  14. Meah K, Ula S (2007) Comparative evaluation of HVDC and HVAC transmission systems. In: Power engineering society general meeting, 2007

    Google Scholar 

  15. Hansen L, Blaabjerg F, Christensen H, Lindhard U, Eskildsen K, Madsen P (2001) Generators and power electronics technology for wind turbines. In: 27th annual conference of the IEEE industrial electronics society, IECON, 2001

    Google Scholar 

  16. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  17. Yaramasu V, Wu B, Sen PC, Kouro S, Narimani M (2015) High-power wind energy conversion systems: state-of-the-art and emerging technologies. Proc IEEE 103(5)

    Google Scholar 

  18. Li H, Chen Z (2008) Overview of different wind generator systems and their comparisons. IET Renew Power Gener 2(21):123–138

    Article  Google Scholar 

  19. Hansen LH, Helle L, Blaabjerg F, Ritchie E, Munk-Nielsen S, Bindner H, Sorensen P, Bak-Jensen B (2001) Conceptual survey of generators and power electronics for wind turbines. Riso National Laboratory, Roskilde, Denmark

    Google Scholar 

  20. Giddani OA, Adam GP, Anaya-Lara O, Burt G, Lon KL (2010) Control strategies of VSC-HVDC transmission system for wind power integration to meet GB grid code requirements. In: International symposium on power electronics electrical drives, automation and motion SPEEDAM, 2010

    Google Scholar 

  21. Erlich I, Brakelmann H (2007) Integration of wind power into the German high voltage transmission grid. In: Power engineering society general meeting, 2007

    Google Scholar 

  22. Erlich I, Winter W, Dittrich A (2006) Advanced grid requirements for the integration of wind turbines into the German transmission system. In: Power engineering society general meeting, 2006

    Google Scholar 

  23. Veilleux E, Lehn PW (2014) Interconnection of direct-drive wind turbines using a series-connected DC grid. IEEE Trans Sustain Energy 5(1):139–147

    Article  Google Scholar 

  24. Chuangpishit S, Tabesh A, Moradi-Shahrbabak Z, Saeedifard M (2014) Topology design for collector systems of offshore wind farms with pure DC power systems. IEEE Trans Ind Electron 61(1):320–328

    Article  Google Scholar 

  25. Holtsmark N, Bahirat HJ, Molinas M, Mork BA, Hoidalen HK (2013) An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model. IEEE Trans Ind Electron 60(6):2420–2428

    Article  Google Scholar 

  26. Musasa K, Gitau MN, Bansal RC (2015) Dynamic analysis of DC-DC converter internal to an offshore wind farm. IET Renew Power Gener 9(6):542–548

    Article  Google Scholar 

  27. Chen W, Huang AQ, Li C, Wang G, Gu W (2013) Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems. IEEE Trans Power Electron 28(4):2014–2023

    Article  Google Scholar 

  28. Robinson J, Jovcic D, Joos G (2010) Analysis and design of an offshore wind farm using a MV DC grid. IEEE Trans Power Deliv 25(4):2164–2173

    Article  Google Scholar 

  29. Yiqing L, Grain PA, Derrick H, Stephen JF (2016) Medium-voltage DC/DC converter for offshore wind collection grid. IET Renew Power Gener 10(5):651–660

    Article  Google Scholar 

  30. Lu W, Ooi B-T (2005) Premium quality power park based on multi-terminal HVDC. IEEE Trans Power Deliv 20(2):978–983

    Article  Google Scholar 

  31. Lu W, Ooi BT (2003) Optimal acquisition and aggregation of offshore wind power by multiterminal voltage source HVDC. IEEE Trans Power Deliv 18(1):201–206

    Article  Google Scholar 

  32. Guo C, Zhao C (2010) Supply of an entirely passive AC network through a double-infeed HVDC system. IEEE Trans Power Electron 24(11):2835–2841

    Google Scholar 

  33. Meyer C, Hoing M, Peterson A, Donckeri RWD (2007) Control and design of DC grids for offshore wind farms. IEEE Trans Ind Appl 6(43):1475–1481

    Article  Google Scholar 

  34. Max L (2009) Design and control of a DC collection grid for a wind farm. Thesis for the degree of doctor of philosophy, Chalmers University of Technology, 2009, pp 1–157

    Google Scholar 

  35. Deng F, Chen Z (2011) An offshore wind farm with DC grid connection and its performance under power system transients. In: IEEE power and energy conference, San Diego, USA, 2011, pp 1–8

    Google Scholar 

  36. Deng F, Chen Z (2013) Operation and control of a DC-grid offshore wind farm under DC transmission system faults. IEEE Trans Power Deliv 28(3):1356–1363

    Article  Google Scholar 

  37. Musasa K, Gitau MN, Bansal RC (2015) Analysis of a DC collector-based power converter topology for an offshore wind farm. Electric Power Compon Syst 43(8–10):1113–1121

    Article  Google Scholar 

  38. Musasa K, Gitau MN, Bansal RC (2015) Performance analysis of power converter based active rectifier for an offshore wind park. Electric Power Compon Syst 43(8–10):1089–1099

    Article  Google Scholar 

  39. Guan M, Xu Z (2014) A novel concept of offshore wind-power collection and transmission system based on cascaded converter topology. Int Trans Electr Energy Syst 24(3):363–367

    Article  Google Scholar 

  40. Flourentzou N, Agelidis VG, Demetriades GD (2009) VSC-based HVDC power transmission systems: an overview. IEEE Trans Power Electron 24(3):592–602

    Article  Google Scholar 

  41. Powell L (2004) Power system load flow analysis. McGraw-Hill, New York

    Google Scholar 

  42. Puran R, Patrick JN, Steven DA, Stuart JG, Graeme MB (2016) Evaluation of the impact of high-bandwidth energy-storage systems on DC protection. IEEE Trans Power Deliv 31(2):586–594

    Article  Google Scholar 

  43. Lie X, Dong C (2011) Control and operation of a DC microgrid with variable generation and energy storage. IEEE Trans Power Deliv 26(4):2513–2522

    Article  Google Scholar 

  44. Jalbrzykowski S, Citko T (2009) A bidirectional DC-DC converter for renewable energy systems. Bull Pol Acad Sci Tech Sci 57(4)

    Google Scholar 

  45. Arrillaga J, Liu YH, Watson NR (2007) Flexible power transmission: the HVDC options. Wiley, Hoboken

    Book  Google Scholar 

  46. Yazdani A, Iravani R (2010) Voltage-sourced converters in power systems: modelling, control, and applications. Wiley, New Jersey

    Book  Google Scholar 

  47. Cuzner RM, Venkataramanam G (2008) The status of DC micro-grid protection. In: IEEE industry applications society annual meeting, Edmonton, Alta, 5–9 Oct 2008

    Google Scholar 

  48. Stamatiou G, Srivastava K, Reza M, Zanchetta P (2011) Economics of DC wind collection grid as affected by cost of key components. In: World renewable energy congress, Linkoping, Sweden, 8–13 May 2011

    Google Scholar 

  49. Salomonson D, Sannino A (2007) Low-voltage DC distribution system for commercial power system with sensitive electronic loads. IEEE Trans Power Deliv 22(3):1620–1627

    Article  Google Scholar 

  50. Krstic S, Wellner E, Bendre A, Semenov B (2007) Circuit breaker technologies for advanced ship power system. In: IEEE electric ship technology symposium, 2007

    Google Scholar 

  51. Meyer C, Kowal M, Doncker RW (2005) Circuit breaker concepts for future high-power DC-applications. In: IEEE-IAS conference record, 2–6 Oct 2005, pp 860–866

    Google Scholar 

  52. Kheraluwala MH, Gascoigne RW, Divan DM, Bauman ED (1992) Performance characterization of high power dual active bridge DC-to-DC converter. IEEE Trans Ind Appl 28(6):1294–1301

    Article  Google Scholar 

  53. Li H, Peng FZ, Lawler IS (2003) A natural ZVS medium-power-bidirectional DC-DC converter with minimum number of devices. IEEE Trans Ind Appl 39(2):525–535

    Article  Google Scholar 

  54. Attou A, Massoum A, Saidi M (2014) Photovoltaic power control using MPPT and boost converter. Balkan J Electr Comput Eng 2(1):23–27

    Google Scholar 

  55. Slootweg JG, Polinder H, Kling WL (2003) Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans Energy Conv 18(4):516–524

    Article  Google Scholar 

  56. Anderson PM, Associates PM, Bose A (1983) Stability simulation of wind turbine systems. IEEE Trans Power App Syst 102(12):3791–3795

    Google Scholar 

  57. Moham N, Undeland TM, Robbins WP (2003) Power electronics: converters, applications, and design. Wiley, Hoboken

    Google Scholar 

  58. Ramtharan G, Arulampalam A, Ekanayake J, Hughes F, Jenkins N (2009) Fault ride through of fully rated converter wind turbines with AC and DC transmission systems. IET Renew Power Gener 3(4):426–438

    Article  Google Scholar 

  59. Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN (2015) Review of energy storage system for wind power integration support. Appl Energy 137(4):545–553

    Article  Google Scholar 

  60. Zhang L, Wang Y, Li H (2012) Coordinated control of MTDC-based microgrid with wind turbines. In: IEEE 7th international power electronics and motion control conference, ECCE Asia, 2012

    Google Scholar 

  61. Swierczynski M, Teodorescu R, Rasmussen CN, Rodriguez P, Vikelgaard H (2010) Overview of the energy storage systems for wind power integration enhancement. In: IEEE international symposium, industrial electronics (ISIE), 2010, pp 3749–3756

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabeya Musasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Musasa, K., Gitau, M.N., Bansal, R. (2017). Integrating an Offshore Wind Farm to an Existing Utility Power Network via an HVDC Collection Grid: Alternative Topology. In: Bansal, R. (eds) Handbook of Distributed Generation. Springer, Cham. https://doi.org/10.1007/978-3-319-51343-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51343-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51342-3

  • Online ISBN: 978-3-319-51343-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics