Skip to main content

Recent Developments in Stability Theory for Stochastic Hybrid Inclusions

  • Chapter
  • First Online:
Feedback Stabilization of Controlled Dynamical Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 473))

Abstract

Stochastic hybrid systems (SHS) combine continuous evolution, instantaneous jumps, and random inputs that affect each type of evolution. Various types of SHS have been studied for over three decades and can be used to model many interesting systems in science and engineering. The most recent developments regarding SHS focus on models that permit nonunique solutions, perhaps thereby modeling the effect of an adversarial input on the system dynamics, and robustness properties, which can again be linked to the effect of adversaries. We call such systems “stochastic hybrid inclusions” (SHI). Using, as a departure point, developments over the past ten years on modeling, sequential compactness of the solution space, and robustness of stability for non-stochastic hybrid systems, a comprehensive modeling framework for SHI is being developed. The ultimate goal is an extensive, robust stability theory for SHI. In this paper, we review recent results that have been obtained in this direction, describing a solution concept for a class of SHI, defining stability notions like recurrence and asymptotic stability in probability, stating equivalent characterizations (involving uniformity and robustness) that follow from a sequential compactness result, providing Lyapunov-based necessary and sufficient conditions for these properties, and describing relaxed sufficient conditions that are based on an invariance-like principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information, see [30, pp. 154–155].

  2. 2.

    See [30, Definition 5.4].

  3. 3.

    See [30, Definition 5.14].

References

  1. Bacciotti, A., Ceragioli, F.: Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions. ESAIM-COCV 4, 361–376 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbashin, E.A., Krasovskii, N.N.: On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18, 345–350 (1954)

    Google Scholar 

  3. Brodtkorb, A.H., Teel, A.R., Sorensen, A.J.: Sensor-based hybrid observer for dynamic positioning. In: 54th IEEE Conference on Decision and Control (CDC), pp. 948–953, Dec 2015

    Google Scholar 

  4. Cai, C., Teel, A.R., Goebel, R.: Smooth Lyapunov functions for hybrid systems. Part II: (Pre-)asymptotically stable compact sets. IEEE Trans. Autom. Control 53(3), 734–748, Apr 2008

    Google Scholar 

  5. Clarke, F.H., Ledyaev, Y.S., Stern, R.J.: Asymptotic stability and smooth Lyapunov functions. J. Differ. Equ. 149, 69–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer (1988)

    Google Scholar 

  7. Goebel, R., Hespanha, J., Teel, A.R., Cai, C., Sanfelice, R.: Hybrid systems: generalized solutions and robust stability. In: IFAC Symposium on Nonlinear Control Systems, pp. 1–12. Stuttgart, Germany (2004)

    Google Scholar 

  8. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  9. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems. Princeton University Press (2012)

    Google Scholar 

  10. Goebel, R., Teel, A.R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42, 573–587 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grammatico, S., Subbaraman, A., Teel, A.R.: Discrete-time stochastic control systems: a continuous Lyapunov function implies robustness to strictly causal perturbations. Automatica 49(10), 2939–2952 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grimm, G., Messina, M.J., Tuna, S.E., Teel, A.R.: Examples when nonlinear model predictive control is nonrobust. Automatica 40(10), 1729–1738 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hàjek, O.: Discontinuous differential equations I. J. Differ. Equ. 32, 149–170 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hespanha, J.P.: A model for stochastic hybrid systems with application to communication networks. Nonlinear Anal. Spec. Issue Hybrid Syst. 62, 1353–1383 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Hespanha, J.P., Morse, A.S.: Stabilization of nonholonomic integrators via logic-based switching. Automatica 35(3), 385–393 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kellett, C.M., Teel, A.R.: Smooth Lyapunov functions and robustness of stability for differential inclusions. Sys. Control Lett. 52, 395–405 (2004)

    Article  MATH  Google Scholar 

  17. Kurzweil, J.: On the inversion of Ljapunov’s second theorem on stability of motion. Am. Math. Soc. Trans. Ser. 2(24), 19–77. Originally appeared in. Czechoslovak Mathematical Journal 81(1956), 217–259 (1963)

    Google Scholar 

  18. Ledyaev, Y.S., Sontag, E.D.: A Lyapunov characterization of robust stabilization. Nonlinear Anal. 37, 813–840 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, Y., Sontag, E.D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34(1), 124–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loria, A., Panteley, E., Popovic, D., Teel, A.R.: A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems. IEEE Trans. Autom. Control 50(2), 183–198 (2005)

    Article  MathSciNet  Google Scholar 

  21. Malkin, I.G.: On the question of the reciprocal of Lyapunov’s theorem on asymptotic stability. Prikl. Mat. Meh. 18, 129–138 (1954)

    Google Scholar 

  22. Massera, J.L.: On Liapounoff’s conditions of stability. Ann. Math. 50, 705–721 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  23. Massera, J.L.: Contributions to stability theory. Ann. Math. 64, 182–206 (1956). (Erratum: Annals of Mathematics, vol. 68, (1958), 202.)

    Google Scholar 

  24. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: Quaternion-based hybrid control for robust global attitude tracking. IEEE Trans. Autom. Control 56(11), 2555–2566 (2011)

    Article  MathSciNet  Google Scholar 

  25. Mayhew, C.G., Teel, A.R.: Global stabilization of spherical orientation by synergistic hybrid feedback with application to reduced-attitude tracking for rigid bodies. Automatica 49(7), 1945–1957 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mayhew, C.G., Teel, A.R.: Synergistic hybrid feedback for global rigid-body attitude tracking on \(SO(3)\). IEEE Trans. Autom. Control 58(11), 2730–2742 (2013)

    Article  MathSciNet  Google Scholar 

  27. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Poveda, J.I., Teel, A.R., Nesic, D.: Flexible Nash seeking using stochastic difference inclusions. In: American Control Conference, pp. 2236–2241, July 2015

    Google Scholar 

  29. Rawlings, J.B., Muske, K.R.: The stability of constrained receding horizon control. IEEE Trans. Autom. Control 38, 1512–1516 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer (1998)

    Google Scholar 

  31. Ryan, E.P.: An integral invariance principle for differential inclusions with applications in adaptive control. SIAM J. Control Optim. 36(3), 960–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sanfelice, R.G., Goebel, R., Teel, A.R.: Invariance principles for hybrid systems with connections to detectability and asymptotic stability. IEEE Trans. Autom. Control 52(12), 2282–2297 (2007)

    Article  MathSciNet  Google Scholar 

  33. Sanfelice, R.G., Goebel, R., Teel, A.R.: Generalized solutions to hybrid dynamical systems. ESAIM: Control Optim. Calc. Var. 14(4):699–724 (2008)

    Google Scholar 

  34. Sanfelice, R.G., Teel, A.R.: Asymptotic stability in hybrid systems via nested Matrosov functions. IEEE Trans. Autom. Control 54(7), 1569–1574 (2009)

    Article  MathSciNet  Google Scholar 

  35. Subbaraman, A.: Robust stability theory for stochastic dynamical systems. Ph.D. dissertation, University of California, Santa Barbara (2015)

    Google Scholar 

  36. Subbaraman, A., Hartman, M., Teel, A.R.: A stochastic hybrid algorithm for robust global almost sure synchronization on the circle: All-to-all communication. In: 52nd IEEE Conference on Decision and Control, pp. 600–605, Dec 2013

    Google Scholar 

  37. Subbaraman, A., Teel, A.R.: A converse Lyapunov theorem for strong global recurrence. Automatica 49(10), 2963–2974 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Subbaraman, A., Teel, A.R.: A Matrosov theorem for strong global recurrence. Automatica 49(11), 3390–3395 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Subbaraman, A., Teel, A.R.: A Krasovskii-LaSalle function based recurrence principle for a class of stochastic hybrid systems. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 2310–2315 (2014)

    Google Scholar 

  40. Subbaraman, A., Teel, A.R.: Robustness of recurrence for a class of stochastic hybrid systems. In: Proceedings of the IFAC Conference on the Analysis and Design of Hybrid Systems, pp. 304–309 (2015)

    Google Scholar 

  41. Subbaraman, A., Teel, A.R.: On the equivalence between global recurrence and the existence of a smooth Lyapunov function for hybrid systems. Syst. Control Lett. 88, 54–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Teel, A.R.: Lyapunov conditions certifying stability and recurrence for a class of stochastic hybrid systems. Ann. Rev. Control 37, 1–24 (2013)

    Article  Google Scholar 

  43. Teel, A.R.: A Matrosov theorem for adversarial Markov decision processes. IEEE Trans. Autom. Control 58(8), 2142–2148 (2013)

    Article  MathSciNet  Google Scholar 

  44. Teel, A.R.: On a recurrence principle for a class of stochastic hybrid systems. In: Proceedings of the American Control Conference, pp. 4518–4523 (2014)

    Google Scholar 

  45. Teel, A.R.: On sequential compactness of solutions for a class of stochastic hybrid systems. In: Proceedings of the American Control Conference, pp. 4512–4517 (2014)

    Google Scholar 

  46. Teel, A.R.: Stochastic hybrid inclusions with diffusive flows. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 3071–3076 (2014)

    Google Scholar 

  47. Teel, A.R.: A recurrence principle for stochastic difference inclusions. IEEE Trans. Autom. Control 60(2), 420–435 (2015)

    Article  MathSciNet  Google Scholar 

  48. Teel, A.R., Hespanha, J., Subbaraman, A.: Stochastic difference inclusions: results on recurrence and asymptotic stability in probability. In: Proceedings of the 51st IEEE Conference on Decision and Control, pp. 4051–4056 (2012)

    Google Scholar 

  49. Teel, A.R., Hespanha, J.P., Subbaraman, A.: A converse Lyapunov theorem and robustness for asymptotic stability in probability. IEEE Trans. Autom. Control 59(9), 2426–2441 (2014)

    Article  MathSciNet  Google Scholar 

  50. Teel, A.R., Nesic, D., Lee, T.-C., Tan, Ying: A refinement of Matrosov’s theorem for differential inclusions. Automatica 68, 378–383 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Teel, A.R., Praly, L.: Global stabilizability and observability imply semi-global stabilizability by output feedback. Syst. Control Lett. 22(5), 313–325 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Teel, A.R., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33(5), 1443–1488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teel, A.R., Subbaraman, A., Sferlazza, A.: Stability analysis for stochastic hybrid systems: a survey. Automatica 50(10), 2435–2456 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Teel, A.R., Praly, L.: On assigning the derivative of a disturbance attenuation control Lyapunov function. Math. Control Signals Syst. 13, 95–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Teel, A.R., Praly, L.: A smooth Lyapunov function from a class-\({\cal{KL}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000)

    Google Scholar 

Download references

Acknowledgements

The research reported in this chapter has been supported by the US Air Force Office of Scientific Research through grants FA9550-12-1-0127 and FA9550-15-1-0155, and by the US National Science Foundation through grants ECCS-1232035 and ECCS-1508757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Teel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Teel, A.R. (2017). Recent Developments in Stability Theory for Stochastic Hybrid Inclusions. In: Petit, N. (eds) Feedback Stabilization of Controlled Dynamical Systems. Lecture Notes in Control and Information Sciences, vol 473. Springer, Cham. https://doi.org/10.1007/978-3-319-51298-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51298-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51297-6

  • Online ISBN: 978-3-319-51298-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics