Asymptotic Expansions of Laplace Integrals for Quantum State Tomography

  • Pierre Six
  • Pierre RouchonEmail author
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 473)


Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace integrals. When this maximum is on the boundary of the integration domain, as is the case when the MaxLike quantum state is not full rank, such expansions are not standard. We provide here such expansions, even when this maximum does not lie on the smooth part of the boundary, as in the case when the rank deficiency exceeds two. Aside from the MaxLike estimate of the quantum state, these expansions provide confidence intervals for any observable. They confirm the formula proposed and used without precise mathematical justifications by the authors in an article recently published in Physical Review A.


  1. 1.
    Cappé, O., Moulines, E., Ryden, T.: Inference in Hidden Markov Models. Springer Series in Statistics (2005)Google Scholar
  2. 2.
    Paris, M.G.A., Rehacek, J.: Quantum State Estimation. Springer (2004)Google Scholar
  3. 3.
    Blume-Kohout, R.: Optimal, reliable estimation of quantum states. New J. Phys. 12(4), 043034 (2010)Google Scholar
  4. 4.
    Six, P., Campagne-Ibarcq, P., Dotsenko, I., Sarlette, A., Huard, B., Rouchon, P.: Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence. Phys. Rev. A 93, 012109 (2016)CrossRefGoogle Scholar
  5. 5.
    Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover, New York (1986)zbMATHGoogle Scholar
  6. 6.
    Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. II. Birkhäuser, Boston (1985)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lin, S.: Algebraic Methods for Evaluating Integrals in Bayesian Statistics. PhD thesis, University of California, Berkeley (2011)Google Scholar
  8. 8.
    Watanabe, S.: Algebraic Geometry and Statistical Learning Theory. Cambridge University Press (2009)Google Scholar
  9. 9.
    Milnor, J.: Morse Theory. Princeton University Press (1963)Google Scholar
  10. 10.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2009)Google Scholar
  11. 11.
    Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Academic Press (2004)zbMATHGoogle Scholar
  12. 12.
    Gross, D., Liu, Y.-K., Flammia, S.-T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15), 150401 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre Automatique et Systèmes, Mines-ParisTechPSL Research UniversityParisFrance

Personalised recommendations