Transfer Operators for the Geodesic Flow on Hyperbolic Surfaces

  • Markus Szymon Fraczek
Part of the Lecture Notes in Mathematics book series (LNM, volume 2139)


In this chapter we will discuss a transfer operator for the geodesic flow on hyperbolic surfaces, which Fredholm determinant gives the Selberg zeta function. The transfer operators we are interested in are a so-called nuclear operators of order zero, these operators have a well defined trace and can be approximated by operators of finite rank. Transfer operators can be also regarded as composition operators, for which an explicit trace formula can be found.


  1. 8.
    Baladi, V.: Positive Transfer Operators and Decay of Correlations. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  2. 9.
    Baladi, V., Holschneider, M.: Approximation of nonessential spectrum of transfer operators. Nonlinearity 12, 525–538 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 11.
    Bandtlow, O., Jenkinson, O.: Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions. Adv. Math. 218, 902–925 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 22.
    Bruggeman, R., Fraczek, M., Mayer, D.: Perturbation of zeros of the Selberg zeta-function for Γ 0(4). Exp. Math. 22 (3), 217–252 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 23.
    Bruggeman, R., Lewis, J., Zagier, D.: Function theory related to the group \(\mathrm{PSL}\!\left (2, \mathbb{R}\right )\). Dev. Math. 28, 107–201 (2013)MathSciNetzbMATHGoogle Scholar
  6. 24.
    Bruggeman, R., Lewis, J., Zagier, D.: Period Functions for Maass Forms and Cohomology. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (2015)zbMATHGoogle Scholar
  7. 26.
    Carl, B., Schiebold, C.: Nonlinear equations in soliton physics and operator ideals. Nonlinearity 12 (2), 333–364 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 28.
    Chang, C.H.: Die Transferoperator-Methode für Quantenchaos auf den Modulflächen \(\varGamma \setminus \mathbb{H}\). Ph.D. thesis, Papierflieger, Clausthal-Zellerfeld (1999)Google Scholar
  9. 29.
    Chang, C.H., Mayer, D.: The transfer operator approach to Selberg’s zeta function and modular and Maass wave forms for \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). In: Hejhal, D., Gutzwiller, M., et al. (eds.) Emerging Applications of Number Theory, pp. 72–142. Springer, New York (1999)Google Scholar
  10. 30.
    Chang, C.H., Mayer, D.: An extension of the thermodynamic formalism approach to Selberg’s zeta function for general modular groups. In: Fiedler, B. (eds.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 523–562. Springer, Berlin/New York (2001)CrossRefGoogle Scholar
  11. 36.
    Earle, C., Hamilton, R.: A fixed point theorem for holomorphic mappings. In: Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. 16, pp. 61–65. American Mathematical Society, Providence (1970)Google Scholar
  12. 38.
    Efrat, I.: Dynamics of the continued fraction map and the spectral theory of \(\mathrm{SL}\!\left (2, \mathbb{Z}\right )\). Invent. math. 114, 207–218 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 44.
    Fraczek, M., Mayer, D.: Symmetries of the transfer operator for Γ 0(n) and a character deformation of the Selberg zeta function for Γ 0(4). Algebra Number Theory 6 (3), 587–610 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 48.
    Fried, D.: The zeta functions of Ruelle and Selberg. Ann. Sci. Ec. Norm. Sup. 19, 491–517 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 49.
    Fried, D.: Symbolic dynamics for triangle groups. Invent. Math. 125, 487–521 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 53.
    Grothendieck, A.: Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires. Annales de l’institut Fourier 4, 73–143 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 54.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955).
  18. 55.
    Grothendieck, A.: La théorie de Fredholm. Math. France 84, 319–384 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 72.
    Kamowitz, H.: The spectra of composition operators on H p. J. Funct. Anal. 18 (2), 132–150 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 74.
    König, H.: s-numbers, eigenvalues and the trace theorem in Banach spaces. Studia Math. 67, 157–172 (1980)Google Scholar
  21. 75.
    Lasota, A., Mackey, M.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  22. 78.
    Lewis, J., Zagier, D.: Period functions for Maass wave forms, I. Ann. Math. 153, 191–258 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 79.
    Lidskii, V.: Non-self-adjoint operators with a trace. Dokl. Akad. Nauk SSSR 125, 485–488 (1959)MathSciNetGoogle Scholar
  24. 81.
    Manin, Y., Marcolli, M.: Continued fractions, modular symbols and non commutative geometry. Selecta Math. (N.S.) 8, 475–520 (2002)Google Scholar
  25. 82.
    Margulis, G.: On Some Aspects of the Theory of Anosov Systems. With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg (2004)Google Scholar
  26. 85.
    Mayer, D.: On a ζ function related to the continued fraction transformation. Bulletin de la S.M.F. 104, 195–203 (1976)Google Scholar
  27. 86.
    Mayer, D.: On composition operators on Banach spaces of holomorphic functions. J. Funct. Anal. 35 (2), 191–206 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 87.
    Mayer, D.: The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Physics, vol. 123. Springer, Berlin/Heidelberg (1980)Google Scholar
  29. 88.
    Mayer, D.: On the thermodynamic formalism for the Gauss map. Commun. Math. Phys. 130 (2), 311–333 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 89.
    Mayer, D.: Continued fractions and related transformations, chap. 7 In: Bedford, T., et al. (eds.) Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, pp. 175–222. Oxford University Press, Oxford/New York (1991)Google Scholar
  31. 90.
    Mayer, D.: The thermodynamic formalism approach to Selberg’s zeta function for \(\mathrm{PSL}\!\left (2, \mathbb{Z}\right )\). Bull. Am. Math. Soc. (N.S.) 25 (1), 55–60 (1991)Google Scholar
  32. 93.
    Mayer, D., Roepstorff, G.: On the relaxation time of Gauss’s continued-fraction map I. The Hilbert space approach (Koopmanism). J. Stat. Phys. 47 (1–2), 149–171 (1987)Google Scholar
  33. 104.
    Phillips, R., Sarnak, P.: Cusp forms for character varieties. Geom. Funct. Anal. 4, 93–118 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 105.
    Pietsch, A.: Eigenvalues and s-numbers. Cambridge University Press, Cambridge, UK (1986)zbMATHGoogle Scholar
  35. 106.
    Pietsch, A.: Approximation numbers of nuclear operators and geometry of Banach spaces. Arch. Math. 57 (2), 155–168 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 112.
    Ruelle, D.: Zeta functions and statistical mechanics. Astérisque 40, 167–176 (1976)MathSciNetGoogle Scholar
  37. 113.
    Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Inventiones Mathematicae 34 (3), 231–242 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 114.
    Ruelle, D.: Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge/New York (2004)CrossRefzbMATHGoogle Scholar
  39. 115.
    Ruston, A.F.: On the Fredholm Theory of Integral Equations for Operators Belonging to the Trace Class of a General Banach Space. Proc. Lond. Math. Soc. 2 (2), 109–124 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 120.
    Series, C.: The modular surface and continued fractions. J. Lond. Math. Soc. (2) 31, 69–80 (1985)Google Scholar
  41. 123.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73 (6), 747–817 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 124.
    Strömberg, F.: Computational aspects of Maass waveforms. Ph.D. thesis, Uppsala University (2004)Google Scholar
  43. 126.
    Strömberg, F.: Computation of Selberg Zeta Functions on Hecke Triangle Groups. arXiv:0804.4837v1 (2008, preprint)Google Scholar
  44. 131.
    White, M.: Analytic multivalued functions and spectral trace. Mathematische Annalen 304 (1), 669–683 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Markus Szymon Fraczek
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations