Computation of the Spectra and Eigenvectors of Large Complex Matrices

  • Markus Szymon Fraczek
Part of the Lecture Notes in Mathematics book series (LNM, volume 2139)


One of the critical points in our numerical investigation of the transfer operator is the computation of its eigenvalues. In this section we want to describe briefly what problems arise when computing the eigenvalues of the transfer operator and how we can overcome these problems. To get the best results, both with respect to accuracy and computation time, we had to combine several techniques to produce an optimal algorithm.


  1. 12.
    Bindel, D., Demmel, J., Kahan, W., Marques, O.: On computing Givens rotations reliably and efficiently. ACM Trans. Math. Softw. 28, 206–238 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 20.
    Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I and II: maintaining well-focused shifts and level 3 performance and aggressive early deflation. SIAM J. Matrix Anal. Appl. 23 (4), 929–973 (2002)Google Scholar
  3. 41.
    Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33 (2), 13:1–13:15 (2007)Google Scholar
  4. 46.
    Francis, J.: The QR Transformation A Unitary Analogue to the LR Transformation Part 1. Comput. J. 4 (3), 265–271 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 47.
    Francis, J.: The QR Transformation Part 2. Comput. J. 4 (4), 332–345 (1962)MathSciNetCrossRefGoogle Scholar
  6. 50.
    Givens, W.: Computation of plane unitary rotations transforming a general matrix to triangular form. J. Soc. Ind. Appl. Math. 6 (1), 26–50 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 51.
    Golub, G., Loan, C.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  8. 116.
    Schwarz, H.: Numerische Mathematik. B.G. Teubner Stuttgart (1997)Google Scholar
  9. 130.
    Watkins, D.: The QR algorithm revisited. SIAM Rev. 50 (1), 133–145 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Markus Szymon Fraczek
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations