Advertisement

Electrospinning of Bioactive Wound-Healing Nets

  • Heinz C. SchröderEmail author
  • Emad Tolba
  • Bärbel Diehl-Seifert
  • Xiaohong Wang
  • Werner E.G. MüllerEmail author
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 55)

Abstract

The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties. The underlying principles and the mechanism of these new approaches in the therapy wounds, in particular wounds showing impaired healing, as well as for further applications in skin regeneration/repair, are summarized.

Keywords

Wound Healing Retinoic Acid Electrospun Fiber Wound Dressing FABP4 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

W.E.G. M. is a holder of an ERC Advanced Investigator Grant (No. 268476 “BIOSILICA”) as well as of the two ERC Proof-of-Concept grants “Si-Bone-PoC” (No. 324564) and “MorphoVES-PoC” (No. 662486). This work was supported by grants from the European Commission (large-scale integrating project “BlueGenics” No. 266033 and project “Bio-Scaffolds” No. 604036), as well as the BiomaTiCS research initiative of the University Medical Center Mainz. In addition, we would like to thank Prof. Dr. Vesna Erakovic Haber, Fidelta d.o.o., Zagreb, Croatia, for the animal experiments in in vivo disease model.

References

  1. Abraham JA, Klagsbrun M (1996) Modulation of wound repair by members of the fibroblast growth factor family. In: The molecular and cellular biology of wound repair. Plenum Press, New York, pp 195–248Google Scholar
  2. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 14:772–792PubMedCrossRefGoogle Scholar
  3. Alpaslan G, Nakajima T, Takano Y (1997) Extracellular alkaline phosphatase activity as a possible marker for wound healing: a preliminary report. J Oral Maxillofac Surg 55:56–62PubMedCrossRefGoogle Scholar
  4. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718CrossRefGoogle Scholar
  5. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Perspective article: growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601PubMedCrossRefGoogle Scholar
  6. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16:2–10PubMedCrossRefGoogle Scholar
  7. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923PubMedCrossRefGoogle Scholar
  8. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A: Physicochem Eng Aspects 313–314:183–188CrossRefGoogle Scholar
  9. Clark RAF (1989) Wound repair. Curr Opin Cell Biol 1:1000–1008PubMedCrossRefGoogle Scholar
  10. Coppari R, Bjørbæk C (2012) Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov 11:692–708PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dinarello CA (2011) Blocking interleukin-1b in acute and chronic autoinflammatory diseases. J Int Med 269:16–28CrossRefGoogle Scholar
  12. Ding YL, Chen YW, Qin YJ, Shi GQ, Yu XX, Wan CX (2008) Effect of polymerization degree of calcium polyphosphate on its microstructure and in vitro degradation performance. J Mater Sci Mater Med 19:1291–1295PubMedCrossRefGoogle Scholar
  13. Faxälv L, Boknäs N, Ström JO, Tengvall P, Theodorsson E, Ramström S, Lindahl TL (2013) Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 122:3818–3824PubMedCrossRefGoogle Scholar
  14. Feldmeyer L, Werner S, French LE, Beer H-D (2010) Interleukin-1, inflammasomes and the skin. Eur J Cell Biol 89:638–644PubMedCrossRefGoogle Scholar
  15. Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J (2000) Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J Clin Invest 106:501–509PubMedPubMedCentralCrossRefGoogle Scholar
  16. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770PubMedCrossRefGoogle Scholar
  17. Gallo RL, Dorschner RA, Takashima S, Klagsbrun M, Eriksson E, Bernfield M (1997) Endothelial cell surface alkaline phosphatase activity is induced by IL-6 released during wound repair. J Invest Dermatol 109:597–603PubMedCrossRefGoogle Scholar
  18. Gelain DP, Pasquali MA, Caregnato FF, Castro MA, Moreira JC (2012) Retinol induces morphological alterations and proliferative focus formation through free radical-mediated activation of multiple signaling pathways. Acta Pharmacol Sin 33:558–567PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gilchrest BA, Bohr VA (1997) Aging process, DNA damage, and repair. FASEB J 11:322–330PubMedGoogle Scholar
  20. Gilliver SC, Ashworth JJ, Ashcroft GS (2007) The hormonal regulation of cutaneous wound healing. Clin Dermatol 25:56–62PubMedCrossRefGoogle Scholar
  21. Girona J, Rosales R, Plana N, Saavedra P, Masana L, Vallvé JC (2013) FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. PLoS ONE 8:e81914PubMedPubMedCentralCrossRefGoogle Scholar
  22. Greenhalgh DG, Sprugel KH, Murray MJ, Ross R (1990) PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 136:1235–1246PubMedPubMedCentralGoogle Scholar
  23. Grotheer V, Goergens M, Fuchs PC, Dunda S, Pallua N, Windolf J, Suschek CV (2013) The performance of an orthosilicic acid-releasing silica gel fiber fleece in wound healing. Biomaterials 34:7314–7327PubMedCrossRefGoogle Scholar
  24. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hacchou Y, Uematsu T, Ueda O, Usui Y, Uematsu S, Takahashi M, Uchihashi T, Kawazoe Y, Shiba T, Kurihara S, Yamaoka M, Furusawa K (2007) Inorganic polyphosphate: a possible stimulant of bone formation. J Dent Res 86:893–897PubMedCrossRefGoogle Scholar
  26. Hansen SL, Young DM, Boudreau NJ (2003) HoxD3 expression and collagen synthesis in diabetic fibroblasts. Wound Repair Regen 11:474–480PubMedCrossRefGoogle Scholar
  27. Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL (2014) Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem 289:23168–23176PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hatakeyama N, Kojima T, Iba K, Murata M, Thi MM, Spray DC, Osanai M, Chiba H, Ishiai S, Yamashita T, Sawada N (2008) IGF-I regulates tight-junction protein claudin-1 during differentiation of osteoblast-like MC3T3-E1 cells via a MAP-kinase pathway. Cell Tissue Res 334:243–254PubMedPubMedCentralCrossRefGoogle Scholar
  29. Keleidari B, Mahmoudieh M, Bahrami F, Mortazavi P, Aslani RS, Toliyat SA (2014) The effect of vitamin A and vitamin C on postoperative adhesion formation: a rat model study. J Res Med Sci 19:28–32PubMedPubMedCentralGoogle Scholar
  30. Keylock KT, Vieira VJ, Wallig MA, DiPietro LA, Schrementi M, Woods JA (2008) Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. Am J Physiol Regul Integr Comp Physiol 294:R179–R184PubMedCrossRefGoogle Scholar
  31. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67:675–679PubMedCrossRefGoogle Scholar
  32. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4:044106PubMedCrossRefGoogle Scholar
  33. Krskova-Tybitanclova K, Macejova D, Brtko J, Baculikova M, Krizanova O, Zorad S (2008) Short term 13-cis-retinoic acid treatment at therapeutic doses elevates expression of leptin, GLUT4, PPAR gamma and aP2 in rat adipose tissue. J Physiol Pharmacol 59:731–743PubMedGoogle Scholar
  34. Kulaev IS, Vagabov V, Kulakovskaya T (2004) The biochemistry of inorganic polyphosphates. Wiley, New YorkCrossRefGoogle Scholar
  35. Kusakari Y, Ogawa E, Owada Y, Kitanaka N, Watanabe H, Kimura M, Tagami H, Kondo H, Aiba S, Okuyama R (2006) Decreased keratinocyte motility in skin wound on mice lacking the epidermal fatty acid binding protein gene. Mol Cell Biochem 284:183–188PubMedCrossRefGoogle Scholar
  36. Landis SJ (2008) Chronic wound infection and antimicrobial use. Adv Skin Wound Care 21:531–540PubMedCrossRefGoogle Scholar
  37. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594PubMedPubMedCentralCrossRefGoogle Scholar
  38. Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3:596–632PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lee MY, Tse HF, Siu CW, Zhu SG, Man RY, Vanhoutte PM (2007) Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 27:2443–2449PubMedCrossRefGoogle Scholar
  40. Lee D, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M (2009) Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol 220:427–439PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lerman ZO, Galiano RD, Armour M, Levine JP, Gurtner GC (2003) Cellular dysfunction in the diabetic fibroblast. Am J Pathol 162:303–312PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Mineral Res 13:803–812CrossRefGoogle Scholar
  43. Lionelli GT, Lawrence WT (2003) Wound dressings. Surg Clin North Am 83:617–638PubMedCrossRefGoogle Scholar
  44. Lorencová E, Vltavská P, Budinský P, Koutný M (2012) Antibacterial effect of phosphates and polyphosphates with different chain length. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:2241–2245PubMedCrossRefGoogle Scholar
  45. Lorenz B, Müller WEG, Kulaev IS, Schröder HC (1994) Purification and characterization of an exopolyphosphatase activity from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204PubMedGoogle Scholar
  46. Lorenz B, Batel R, Bachinski N, Müller WEG, Schröder HC (1995) Purification and characterization of two exopolyphosphatases from the marine sponge Tethya lyncurium. Biochim Biophys Acta 1245:17–28PubMedCrossRefGoogle Scholar
  47. Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261PubMedCrossRefGoogle Scholar
  48. Low QE, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, Kovacs EJ, DiPietro LA (2001) Wound healing in MIP-1 alpha(-/-) and MCP-1(-/-) mice. Am J Pathol 159:457–463PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:654–677PubMedCrossRefGoogle Scholar
  50. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880PubMedCrossRefGoogle Scholar
  51. Mamedov LA, Nikolaev AV, Zakharov VV, Shekhter AB, IuR K (1987) Phosphatase activity of blood leukocytes and wound exudate during the experimental healing of an aseptic wound. Biull Eksp Biol Med 104:306–309PubMedGoogle Scholar
  52. Matarese V, Bernlohr DA (1988) Purification of murine adipocytes lipid-binding protein. Characterization as a fatty acid-and retinoic acid-binding protein. J Biol Chem 263:14544–14551PubMedGoogle Scholar
  53. McCarty SM, Percival SL, Clegg PD, Cochrane CA (2015) The role of polyphosphates in the sequestration of matrix metalloproteinases. Int Wound J 12:89–99PubMedCrossRefGoogle Scholar
  54. McDougall S, Dallon J, Sherratt J, Maini P (2006) Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans A Math Phys Eng Sci 364:1385–1405PubMedCrossRefGoogle Scholar
  55. Mehr SMH, Dinarvand P, Rezaie AR (2014) Inorganic polyphosphate activates mTOR complexes 1 and 2 in vascular endothelial cells. 56th ASH Annual Meeting in San Francisco, CA, (Session 302, Abstract 1441)Google Scholar
  56. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25:19–25PubMedCrossRefGoogle Scholar
  57. Minematsu T, Nakagami G, Yamamoto Y, Kanazawa T, Huang L, Koyanagi H, Sasaki S, Uchida G, Fujita H, Haga N, Yoshimura K, Nagase T, Sanada H (2013) Wound blotting: A convenient biochemical assessment tool for protein components in exudate of chronic wounds. Wound Rep Reg 21:329–334CrossRefGoogle Scholar
  58. Moon JH, Park JH, Lee JY (2011) Antibacterial action of polyphosphate on Porphyromonas gingivalis. Antimicrob Agents Chemother 55:806–812PubMedCrossRefGoogle Scholar
  59. Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G (2006) Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging 1:327–348PubMedPubMedCentralCrossRefGoogle Scholar
  60. Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011) Inorganic polymeric phosphate/polyphosphate is an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671PubMedCrossRefGoogle Scholar
  61. Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013) Silicateins—a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chemistry 19:5790–5804PubMedCrossRefGoogle Scholar
  62. Müller WEG, Schröder HC, Wang XH (2014a) Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine. Trends Biotechnol 32:441–447PubMedCrossRefGoogle Scholar
  63. Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Link T, Wang XH (2014b) Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells. Biotechnol J 9:1312–1321PubMedCrossRefGoogle Scholar
  64. Müller WEG, Tolba E, Dorweiler B, Schröder HC, Diehl-Seifert B, Wang XH (2015a) Electrospun bioactive mats enriched with Ca-polyphosphate/retinol nanospheres as potential wound dressing. Biochem Biophys Rep 3:150–160Google Scholar
  65. Müller WEG, Tolba E, Feng Q, Schröder HC, Markl JS, Kokkinopoulou M, Wang XH (2015b) Amorphous Ca2+ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells. J Cell Sci 128:2202–2207PubMedCrossRefGoogle Scholar
  66. Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Wang XH (2015c) Retinol encapsulated into amorphous Ca2+ polyphosphate nanospheres acts synergistically in MC3T3-E1 cells. Eur J Pharm Biopharm 93:214–223PubMedCrossRefGoogle Scholar
  67. Müller WEG, Tolba E, Schröder HC, Neufurth M, Wang SF, Link T, Al-Nawas B, Wang XH (2015d) A new printable and durable N, O-carboxymethyl chitosan-Ca2+—polyphosphate complex with morphogenetic activity. J Mater Chem B 3:1722–1730CrossRefGoogle Scholar
  68. Müller WEG, Tolba E, Schröder HC, Wang SF, Glaßer G, Muñoz-Espí R, Link T, Wang XH (2015e) A new polyphosphate calcium material with morphogenetic activity. Mater Lett 148:163–166CrossRefGoogle Scholar
  69. Müller WEG, Neufurth M, Wang SF, Tolba E, Schröder HC, Wang XH (2016a) Morphogenetically active scaffold for osteochondral repair (polyphosphate/alginate/N, O-carboxymethyl chitosan). Eur Cell Mater 31:174–190PubMedCrossRefGoogle Scholar
  70. Müller WEG, Schröder HC, Tolba E, Diehl-Seifert B, Wang XH (2016b) Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J 283:74–87PubMedCrossRefGoogle Scholar
  71. Murad A, Nath AK, Cha ST, Demir E, Flores-Riveros J, Sierra-Honigmann MR (2003) Leptin is an autocrine/paracrine regulator of wound healing. FASEB J 17:1895–1897PubMedGoogle Scholar
  72. Neufurth M, Wang XH, Schröder HC, Feng QL, Diehl-Seifert B, Ziebart T, Steffen R, Wang SF, Müller WEG (2014) Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials 35:8810–8819PubMedCrossRefGoogle Scholar
  73. Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E (2008) Platelets and wound healing. Front Biosci 13:3532–3548PubMedGoogle Scholar
  74. Obara K, Ishihara M, Fujita M, Kanatani Y, Hattori H, Matsui T, Takase B, Ozeki Y, Nakamura S, Ishizuka T, Tominaga S, Hiroi S, Kawai T, Maehara T (2005) Acceleration of wound healing in healing impaired db/db mice with a photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2. Wound Rep Reg 13:390–397CrossRefGoogle Scholar
  75. Ohtake H, Wu H, Imazu K, Anbe Y, Kato J, Kuroda A (1996) Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resour Conserv Recycl 18:125–134CrossRefGoogle Scholar
  76. Ong SY, Wu J, Moochhala SM, Tan MH, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332PubMedCrossRefGoogle Scholar
  77. Pandel R, Poljšak B, Godic A, Dahmane R (2013) Skin photoaging and the role of antioxidants in its prevention. ISRN Dermatol 12:930164Google Scholar
  78. Pasche S, Schyrr B, Wenger B, Scolan E, Ischer R, Voirin G (2013) Smart textiles with biosensing capabilities. Adv Sci Technol 80:129–135CrossRefGoogle Scholar
  79. Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA (2001) Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization. Biomaterials 22:963–972PubMedCrossRefGoogle Scholar
  80. Plutzky J (2011) The PPAR-RXR transcriptional complex in the vasculature: energy in the balance. Circ Res 108:1002–1016PubMedCrossRefGoogle Scholar
  81. Risau W (1990) Angiogenic growth factors. Prog Growth Factor Res 2:71–79PubMedCrossRefGoogle Scholar
  82. Sawamura D, Meng X, Ina S, Sato M, Tamai K, Hanada K, Hashimoto I (1998) Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte gene therapy for inflammatory skin diseases using IL-6 mutant genes. J Immunol 161:5633–5639PubMedGoogle Scholar
  83. Schröder HC, Lorenz B, Kurz L, Müller WEG (1999) Inorganic polyP in eukaryotes: enzymes, metabolism and function. In: Schröder HC, Müller WEG, (eds) Inorganic polyphosphates: biochemistry, biology, biotechnology. Prog Mol Subcell Biol 23:45-81Google Scholar
  84. Schröder HC, Kurz L, Müller WEG, Lorenz B (2000) Polyphosphate in bone. Biochemistry 65:296–303 (Moscow)PubMedGoogle Scholar
  85. Segawa S, Fujiya M, Konishi H, Ueno N, Kobayashi N, Shigyo T, Kohgo Y (2011) Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS ONE 6:e23278PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shiba T, Nishimura D, Kawazoe Y, Onodera Y, Tsutsumi K, Nakamura R, Ohshiro M (2003) Modulation of mitogenic activity of fibroblast growth factors by inorganic polyphosphate. J Biol Chem 278:26788–26792PubMedCrossRefGoogle Scholar
  87. Simbulan-Rosenthal CM, Gaur A, Sanabria VA, Dussan LJ, Saxena R, Schmidt J, Kitani T, Chen YS, Rahim S, Uren A, Crooke E, Rosenthal DS (2015) Inorganic polyphosphates are important for cell survival and motility of human skin keratinocytes. Exp Dermatol 24:636–639PubMedCrossRefGoogle Scholar
  88. Simmonds RE, Foxwell BM (2008) Signalling, inflammation and arthritis. Rheumatology 47:584–590PubMedCrossRefGoogle Scholar
  89. Skórkowska-Telichowska K, Czemplik M, Kulma A, Szopa J (2013) The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol 68:e117–e126PubMedCrossRefGoogle Scholar
  90. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103:903–908PubMedPubMedCentralCrossRefGoogle Scholar
  91. Supaphol P, Chuangchote S (2008) On the electrospinning of poly(vinyl alcohol) nanofiber mats: a revisit. J Appl Polymer Sci 108:969–978CrossRefGoogle Scholar
  92. Tabe Y, Konopleva M, Munsell MF, Marini FC, Zompetta C, McQueen T, Tsao T, Zhao S, Pierce S, Igari J, Estey EH, Andreeff M (2004) PML-RAR alpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood 103:1815–1822PubMedCrossRefGoogle Scholar
  93. Tang M, Zhong M, Shang Y, Lin H, Deng J, Jiang H, Lu H, Zhang Y, Zhang W (2008) Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cell Mol Life Sci 65:2924–2932PubMedCrossRefGoogle Scholar
  94. Thorey IS, Hinz B, Hoeflich A, Kaesler S, Bugnon P, Elmlinger M, Wanke R, Wolf E, Werner S (2004) Transgenic mice reveal novel activities of growth hormone in wound repair, angiogenesis and myofibroblast differentiation. J Biol Chem 279:26674–26684PubMedCrossRefGoogle Scholar
  95. Tkalčević VI, Cuzić S, Parnham MJ, Pasalić I, Brajsa K (2009) Differential evaluation of excisional non-occluded wound healing in db/db mice. Toxicol Pathol 37:183–192PubMedCrossRefGoogle Scholar
  96. Tsuchiya H, Ikeda Y, Ebata Y, Kojima C, Katsuma R, Tsuruyama T, Sakabe T, Shomori K, Komeda N, Oshiro S, Okamoto H, Takubo K, Hama S, Shudo K, Kogure K, Shiota G (2012) Retinoids ameliorate insulin resistance in a leptin-dependent manner in mice. Hepatology 56:1319–1330Google Scholar
  97. Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y (2011) Hyaluronic acid nanofiber wound dressing–production, characterization, and in vivo behavior. J Biomed Mater Res B Appl Biomater 97:20–29PubMedCrossRefGoogle Scholar
  98. Wang L, Fraley CD, Faridi J, Kornberg A, Roth RA (2003) Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc Natl Acad Sci USA 100:11249–11254PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wang L, Tankersley LR, Tang M, Potter JJ, Mezey E (2004) Regulation of alpha 2(I) collagen expression in stellate cells by retinoic acid and retinoid X receptors through interactions with their cofactors. Arch Biochem Biophys 428:92–98PubMedCrossRefGoogle Scholar
  100. Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578PubMedCrossRefGoogle Scholar
  101. Wang XH, Schröder HC, Diehl-Seifert B, Kropf K, Schloßmacher U, Wiens M, Müller WEG (2013a) Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. J Tissue Eng Regen Med 7:767–776PubMedGoogle Scholar
  102. Wang XH, Schröder HC, Feng QL, Draenert F, Müller WEG (2013b) The deep-sea natural products, biogenic polyphosphate (Bio-PolyP) and biogenic silica (Bio-Silica), as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11:718–746PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang XH, Schröder HC, Feng Q, Diehl-Seifert B, Grebenjuk VA, Müller WEG (2014a) Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1. Biochem Pharmacol 89:413–421PubMedCrossRefGoogle Scholar
  104. Wang XH, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WEG (2014b) The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Mar Drugs 12:1131–1147PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang XH, Schröder HC, Müller WEG (2014c) Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine. Int Rev Cell Mol Biol 313:27–77PubMedCrossRefGoogle Scholar
  106. Wang SF, Wang XH, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WEG (2014d) Bioactive and biodegradable silica biomaterial for bone regeneration. Bone 67:292–304PubMedCrossRefGoogle Scholar
  107. Wang XH, Schröder HC, Müller WEG (2016) Polyphosphate as a metabolic fuel in Metazoa: a foundational breakthrough invention for biomedical applications. Biotechnol J 11:11–30PubMedCrossRefGoogle Scholar
  108. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870PubMedGoogle Scholar
  109. Yoshimura K, Uchida G, Okazaki M, Kitano Y, Harii K (2003) Differential expression of heparin-binding EGF-like growth factor (HB-EGF) mRNA in normal human keratinocytes induced by a variety of natural and synthetic retinoids. Exp Dermatol 12(Suppl 2):28–34PubMedCrossRefGoogle Scholar
  110. Yuan J, Geng J, Xing Z, Shim KJ, Han I, Kim JC, Kang IK, Shen J (2015) Novel wound dressing based on nanofibrous PHBV-keratin mats. J Tissue Eng Regen Med 9:1027–1035PubMedCrossRefGoogle Scholar
  111. Zhang Y, Lim CT, Ramakrishna S, Huang ZM (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16:933–946PubMedCrossRefGoogle Scholar
  112. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Heinz C. Schröder
    • 1
    • 2
    Email author
  • Emad Tolba
    • 1
  • Bärbel Diehl-Seifert
    • 1
    • 2
  • Xiaohong Wang
    • 1
    • 2
  • Werner E.G. Müller
    • 1
    • 2
    Email author
  1. 1.ERC Advanced Investigator GroupInstitute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
  2. 2.NanotecMARIN GmbHMainzGermany

Personalised recommendations