Advertisement

Mitigating Bat Mortality with Turbine-Specific Curtailment Algorithms: A Model Based Approach

  • Oliver BehrEmail author
  • Robert Brinkmann
  • Klaus Hochradel
  • Jürgen Mages
  • Fränzi Korner-Nievergelt
  • Ivo Niermann
  • Michael Reich
  • Ralph Simon
  • Natalie Weber
  • Martina Nagy
Chapter

Abstract

Alarmingly high numbers of bats are being killed at wind turbines worldwide, raising concerns about the cumulative effects of bat mortality on bat populations. Mitigation measures to effectively reduce bat mortality at wind turbines while maximising energy production are of paramount importance. Operational mitigation (i.e. feathering wind turbine rotors at times of high collision risk for bats) is currently the only strategy that has been shown to substantially reduce bat mortality. This study presents a model based approach for developing curtailment algorithms that account for differences in bat activity over the year and night-time and are specific to the activity level at a certain wind turbine. The results show that easily measurable variables (wind speed, month, time of night) can predict times of higher bat activity with a high temporal resolution. A recently published collision model that was developed based on an excessive carcass search study is then applied to predict bat collision rate based on the modelled bat activity. Using the ratio of wind energy revenue and collision rate, 10 min intervals were weighted, so that turbines are stopped when collision rate is high and loss in revenue is low. A threshold of two dead bats per year and turbine resulted in a mean loss in annual revenue of 1.4%. The presented approach of acoustic monitoring at the nacelle and turbine specific curtailment has become the standard method to mitigate collision risk of bats at wind turbines in Germany.

Keywords

Acoustic activity Bats Collision risk Central Europe Operational mitigation Wind turbine 

Notes

Acknowledgements

We thank the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, particularly S. Hofmann and A. Radecke and the Project Management Jülich particularly G. Heider and T. Petrovic for funding and scientific feedback. We express our gratitude to the operators of wind turbines for granting us access to their turbines. We thank our project partner ENERCON GmbH (especially B. de Wolf, K. Einnolf, F. Kentler, U. Kleinoeder, M. Schellschmidt, R. Schulte, and several service teams) for technical support and for the installation of acoustic detectors and sensors at the wind turbines. This work profited greatly from manifold contributions in scientific discussions, meetings and workshops of numerous people represented here by T. Dürr, L. Bach, F. Bontadina, P. Korner, V. Runkel, and U. Marckmann.

References

  1. Arnett E, Johnson G, Erickson W, Hein C (2013) A synthesis of operational mitigation studies to reduce bat fatalities at wind energy facilities in North America. A report submitted to the National Renewable Energy Laboratory. Bat Conservation International. Austin, Texas, USA. Austin, Texas, USAGoogle Scholar
  2. Arnett EB, Baerwald EF (2013) Impacts of wind energy development on bats: implications for conservation. In: Bat evolution, ecology, and conservation. Springer, Berlin, pp 435–456Google Scholar
  3. Arnett EB, Baerwald EF, Mathews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca R, Voigt CC (2016) Impacts of wind energy development on bats: a global perspective. In: Bats in the anthropocene: conservation of bats in a changing world. Springer, Berlin, pp 295–323Google Scholar
  4. Arnett EB, Brown WK, Erickson WP, Fiedler JK, Hamilton BL, Henry TH, Jain A, Johnson GD, Kerns J, Koford RR, Nicholson CP, O’Connell TJ, Piorkowski MD, Tankersley RD (2008) Patterns of bat fatalities at wind energy facilities in North America. J Wildlife Manage 72(1):61–78. doi: 10.2193/2007-221 CrossRefGoogle Scholar
  5. Arnett EB, Hayes JP, Huso MP (2006) Patterns of pre-construction bat activity at a proposed wind facility in south-central Pennsylvania. An annual report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International, Austin, Texas, USAGoogle Scholar
  6. Arnett EB, Huso MP, Reynolds DS, Schirmacher M (2007) Patterns of pre-construction bat activity at a proposed wind facility in northwest Massachusetts. An annual report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International, Austin, Texas, USAGoogle Scholar
  7. Arnett EB, Schirmacher M, Huso M, Hayes J (2009) Effectiveness of changing wind turbine cut-in speed to reduce bat fatalities at wind facilities. An annual report submitted to the Bats and Wind Energy Cooperative Bat Conservation International Austin, Texas, USAGoogle Scholar
  8. Baerwald EF, Edworthy J, Holder M, Barclay RMR (2009) A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J Wildl Manage 73(7):1077–1081. doi: 10.2193/2008-233 CrossRefGoogle Scholar
  9. Barclay RM, Harder LD (2003) Life histories of bats: life in the slow lane. In: Kunz T, Fenton M (eds) Bat ecology, pp 209–253Google Scholar
  10. Behr O, Simon R, Nagy M (2015) Leitfaden zur Durchführung einer akustischen Aktivitätserfassung an Windenergieanlagen und zur Berechnung fledermausfreundlicher Betriebsalgorithmen. In: Behr O, Adomeit U, Hochradel K et al. (eds) Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. - Endbericht des Forschungsvorhabens gefördert durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (Förderkennzeichen 0327638C+D)Google Scholar
  11. Behr O, von Helversen O (2006) Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen - Wirkungskontrolle zum Windpark „Roßkopf” (Freiburg i. Br.) im Jahr 2005. unveröffentlichtes Gutachten im Auftrag der regiowind GmbH, Freiburg, ErlangenGoogle Scholar
  12. Beucher Y, Kelm V, Albespy F, Geyelin M, Nazon L, Pick D (2011) Parc éolien de Castelnau-Pegayrols (12). Suivi d’impacts post-implantation sur les chauves souris. Bilan de campagne des 2ème et 3ème année d’exploitation (2009–2010)Google Scholar
  13. Bispo R, Bernardino J, Marques TA, Pestana D (2013) Modeling carcass removal time for avian mortality assessment in wind farms using survival analysis. Environ Ecol Stat 20(1):147–165. doi: 10.1007/s10651-012-0212-5 CrossRefGoogle Scholar
  14. Brinkmann R, Behr O, Korner-Nievergelt F, Mages J, Niermann I, Reich M (2011) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen, vol 4. Cuvillier Verlag, GöttingenGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, BerlinGoogle Scholar
  16. Cryan PM (2008) Mating behavior as a possible cause of bat fatalities at wind turbines. J Wildl Manage 72(3):845–849CrossRefGoogle Scholar
  17. Cryan PM, Barclay RMR (2009) Causes of bat fatalities at wind turbines: hypotheses and predictions. J Mamm 90(6):1330–1340CrossRefGoogle Scholar
  18. Cryan PM, Gorresen PM, Hein CD, Schirmacher MR, Diehl RH, Huso MM, Hayman DT, Fricker PD, Bonaccorso FJ, Johnson DH (2014) Behavior of bats at wind turbines. PNAS 111(42):15126–15131CrossRefGoogle Scholar
  19. Dürr T (2015) Fledermausverluste an Windenergieanlagen – Daten aus der zentralen Fundkartei der Staatlichen Vogelschutzwarte im Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg. (Accessed on 11/22/2015)Google Scholar
  20. Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010a) An emerging disease causes regional population collapse of a common North American bat species. Science 329(5992):679–682. doi: 10.1126/science.1188594 CrossRefGoogle Scholar
  21. Frick WF, Reynolds DS, Kunz TH (2010b) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79(1):128–136. doi: 10.1111/j.1365-2656.2009.01615.x CrossRefGoogle Scholar
  22. Gannon WL, Sherwin RE, Haymond S (2003) On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wildl Soc Bull 31(1):45–61Google Scholar
  23. Hayes JP (2000) Assumptions and practical considerations in the design and interpretation of echolocation-monitoring studies. Acta Chiropterologica 2(2):225–236Google Scholar
  24. Hein C, Gruver J, Arnett E (2013) Relating pre-construction bat activity and post-construction bat fatality to predict risk at wind energy facilities: a synthesis. A report submitted to the National Renewable Energy Laboratory Bat Conservation International, Austin, TX, USAGoogle Scholar
  25. Horn JW, Arnett EB, Kunz TH (2008) Behavioral responses of bats to operating wind turbines. J Wildl Manage 72(1):123–132CrossRefGoogle Scholar
  26. Hull CL, Cawthen L (2013) Bat fatalities at two wind farms in Tasmania, Australia: bat characteristics, and spatial and temporal patterns. New Zeal J Zool 40(1):5–15. doi: 10.1080/03014223.2012.731006 CrossRefGoogle Scholar
  27. Huso MMP (2010) An estimator of wildlife fatality from observed carcasses. Environmetrics. doi: 10.1002/env.1052 Google Scholar
  28. Johnson GD, Perlik MK, Erickson WIP, Strickland JD (2004) Bat activity, composition, and collision mortality at a large wind plant in Minnesota. Wildl Soc Bull 32(4):1278–1288. doi: 10.2193/0091-7648(2004)032[1278:Bacacm]2.0.Co;2 CrossRefGoogle Scholar
  29. Kalko EVK (1991) Das Echoortungs- und Jagdverhalten der drei europäischen Zwergfledermausarten, Pipistrellus pipistrellus (Schreber 1774), Pipistrellus nathusii (Keyserling & Blasius 1939) und Pipistrellus kuhli (Kuhl 1819). Universität Tübingen, TübingenGoogle Scholar
  30. Kerns J, Erickson WP, Arnett EB (2005) Bat and bird fatality at wind energy facilities in Pennsylvania and West Virginia. Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines Edited by EB Arnett The Bats and Wind Energy Cooperative, Bat Conservation International, Austin, Texas, pp 24–95Google Scholar
  31. Korner-Nievergelt F, Behr O, Niermann I, Brinkmann R (2011a) Schätzung der Zahl verunglückter Fledermäuse an Windenergieanlagen mittels akustischer Aktivitätsmessungen und modifizierter N-mixture Modelle. In: Brinkmann R, Behr O, Niermann I, Reich M (eds) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen., vol Umwelt und Raum, vol 4. Cuvillier Verlag, Göttingen, pp Umwelt und Raum Bd. 4:323–353Google Scholar
  32. Korner-Nievergelt F, Brinkmann R, Niermann I, Behr O (2013) Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models. Plos One 8(7). doi:ARTN e67997  10.1371/journal.pone.0067997
  33. Korner-Nievergelt F, Korner-Nievergelt P, Behr O, Niermann I, Brinkmann R, Hellriegel B (2011b) A new method to determine bird and bat fatality at wind energy turbines from carcass searches. Wildl Biol 17:350–363CrossRefGoogle Scholar
  34. Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2(3):18–22Google Scholar
  35. Mayer K, Hurst J, Niermann I, Reich M, Brinkmann R (2015) Recherche von behördlichen Planungsvorgaben und von Planungsempfehlungen nicht-staatlicher Verbände und Institutionen bezüglich der Beachtung des Fledermausschutzes bei Planung und Betrieb von Windenergieanlagen. In: Behr O, Adomeit U, Hochradel K et al (eds) Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen - Endbericht des Forschungsvorhabens gefördert durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (Förderkennzeichen 0327638C+D)Google Scholar
  36. Niermann I, Velten Sv, Korner-Nievergelt F, Brinkmann R, Behr O (2011) Einfluss von Anlagen- und Landschaftsvariablen auf die Aktivität von Fledermäusen an Windenergieanlagen. In: Brinkmann R, Behr O, Niermann I, Reich M (eds) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. Umwelt und Raum, vol 4. Cuvillier Verlag, Göttingen, pp Umwelt und Raum Bd. 4:384–405Google Scholar
  37. O’Shea TJ, Bogan MA, Ellison LE (2003) Monitoring trends in bat populations of the United States and Territories: status of the science and recommendations for the future. Wild Soc Bull 31:16–29Google Scholar
  38. O’Shea TJ, Cryan PM, Hayman DT, Plowright RK, Streicker DG (2016) Multiple mortality events in bats: a global review. Mammal Rev. doi: 10.1111/mam.12064 Google Scholar
  39. Pierson E (1998) Tall trees, deep holes, and scarred landscapes: conservation biology of North American bats. Bat biology and conservation. Smithsonian Institution Press, Washington, DC, pp 309–325Google Scholar
  40. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, AustriaGoogle Scholar
  41. Racey PA, Entwistle AC (2000) Life-history and reproductive strategies of bats. Reproductive biology of bats, pp 363–414Google Scholar
  42. Redell D, Arnett EB, Hayes JP, Huso M (2006) Patterns of pre-construction bat activity at a proposed wind facility in south-central Wisconsin. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International, Austin, Texas, USAGoogle Scholar
  43. Reynolds DS (2006) Monitoring the potential impact of a wind development site on bats in the northeast. J Wildl Manage 70(5):1219–1227CrossRefGoogle Scholar
  44. Schuster E, Bulling L, Köppel J (2015) Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects. Environ Manage 56(2):300–331CrossRefGoogle Scholar
  45. Sherwin RE, Gannon WL, Haymond S (2000) The efficacy of acoustic techniques to infer differential use of habitat by bats. Acta Chiropterologica 2(2):145–153Google Scholar
  46. Simon M, Hüttenbügel S, Smit-Viergutz J (2004) Ökologie und Schutz von Fledermäusen in Dörfern und Städten. Schriftenreihe für Landschaftspflege und Naturschutz, vol 76. BfN, Bonn - Bad GodesbergGoogle Scholar
  47. Skiba R (2003) Europäische Fledermäuse. Neue Brehm-Bücherei Bd 648Google Scholar
  48. Voigt CC, Lehnert LS, Petersons G, Adorf F, Bach L (2015) Wildlife and renewable energy: German politics cross migratory bats. Eur J Wildl Res 61(2):213–219. doi: 10.1007/s10344-015-0903-y CrossRefGoogle Scholar
  49. Weller TJ, Baldwin JA (2011) Using echolocation monitoring to model bat occupancy and inform mitigations at wind energy facilities. J Wildl ManageGoogle Scholar
  50. Winhold L, Kurtai A, Foster R (2008) Long-term change in an assemblage of North American bats: are eastern red bats declining? Acta Chiropterologica 10(2):359–366. doi: 10.3161/150811008x414935 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Oliver Behr
    • 1
    Email author
  • Robert Brinkmann
    • 2
  • Klaus Hochradel
    • 1
  • Jürgen Mages
    • 1
  • Fränzi Korner-Nievergelt
    • 3
    • 4
  • Ivo Niermann
    • 5
  • Michael Reich
    • 5
  • Ralph Simon
    • 1
  • Natalie Weber
    • 1
  • Martina Nagy
    • 1
  1. 1.Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  2. 2.Freiburg Institute of Applied Animal EcologyFreiburgGermany
  3. 3.Oikostat GmbHEttiswilSwitzerland
  4. 4.Swiss Ornithological InstituteSempachSwitzerland
  5. 5.Leibnitz University Hannover, Institute of Environmental PlanningHannoverGermany

Personalised recommendations