Abstract
Numerous field studies have assessed bird mortality rates in wind farms. However, results from different studies are often hard to compare due to differences in methodology. This makes it very difficult to draw conclusions and to use the results in the planning phase of new wind farms (e.g. how to mitigate impacts). In this study, it was attempted to assess how bird mortality rates are affected by (1) the location of the wind farm, (2) the spatial layout of the turbines, (3) the surrounding terrain and (4) the presence of other obstacles such as powerlines. This study involved the monitoring of 91 turbines in two contrasting wind farms in the Netherlands for five years. It used the same standardized search methodology, including experimental trials for carcass removal and search efficiency. The sites differ in location (coastal vs. inland), spatial layout, turbine dimensions, land use, bird community and flight intensity of birds. In addition, at one site powerlines were constructed halfway through the monitoring program. Any fatalities from these powerlines were also monitored in a separate monitoring program. This enabled a comparison of any differences in mortality rates or species composition between the turbine and powerline fatalities. The results show a major impact of turbine location on the number of bird fatalities, both within the same wind farm and between wind farms. Mortality rates at the coastal wind farm were three to five times higher than at the inland wind farm. By far the highest mortality rates were found at turbines close to high-tide roosts and at points where (during spring migration) migrating birds leave the coastline to cross the sea towards Germany or Scandinavia. At these turbines, mortality rates could rise up to several hundred of birds per turbine per year. When expressed in fatalities per ha, overall fatality rates of the powerlines were three times higher than of the turbines in the same area. This may be due to low visibility of the powerlines compared to wind turbines. Comparison of turbine versus powerline fatalities also showed major differences in species composition, with powerline fatalities mostly consisting of passerines and waterfowl, and turbine fatalities being dominated by gulls. As several new wind farms are planned to be realized in the coming years, the results of this study can be used in spatial planning to both assess and mitigate potential impacts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge
Arnett EB, Erickson WP, Kerns J, Horn J (2005) Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. A final report submitted to the bats and wind energy cooperative. Bat Conservation International. Austin, Texas, USA
Bevanger KM, Bartzke G, Brøseth H, Dahl EL, Gjershaug JO, Hanssen FO, Jacobsen KO, Kvaløy P, May RF, Meås R, Nygård T, Refsnæs S, Stokke S, Thomassen J (2011) Optimal design and routing of power lines; ecological, technical and economic perspectives (OPTIPOL). Progress report 2011, Norsk Institutt for Naturforskning
Bispo R, Bernardino J, Marques TA, Pestana D (2013) Modeling carcass removal time for avian mortality assessment in wind farms using survival analysis. Environ Ecol Stat 20:147–165
Bowlin MS, Enstrom DA, Murphy BJ, Plaza E, Jurich P, Cochran J (2015) Unexplained altitude changes in a migrating thrush: long-flight altitude data from radio-telemetry. Auk 132:808–816
Brenninkmeijer A, Van der Weyde C (2011) Monitoring aanvaringsslachtoffers Windpark Delfzijl-Zuid 2006–2011. Eindrapportage vijf jaar monitoring. A&W-rapport 1656. Altenburg & Wymenga ecologisch onderzoek bv, Feanwâlden
Colwell RK (2013). Estimates: statistical estimation of species richness and shared species from samples. Version 9, http://viceroy.eeb.uconn.edu/estimates/
Drewitt AL, Langston RHW (2008) Collision effects of wind-power generators and other obstacles on birds. Ann NY Acad Sci 1334:233–266
Everaert J (2008) Effecten van windturbines op de fauna in Vlaanderen. Onderzoeksresultaten, discussie en aanbevelingen. Rapportnr. INBO.R.2008.44. Instituut voor Natuur-en Bosonderzoek, Brussel
Everaert J (2014) Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61:220–230
Everaert J, Stienen EWM (2007) Impact of wind turbines on birds in Zeebrugge (Belgium). Significant effect on breeding tern colony due to collisions. Biodiv Cons 16:3345–3359
Gotelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391
Gotelli NJ, Colwell RK (2010) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54
Grünkorn T, Diederichs A, Stahl B, Poszig D, Nehls G (2005) Entwicklung einer Methode zur Abschätzung des Kollisionsrisikos von Vögeln an Windenergieanlagen. Unveröff. Gutachten Im Auftrag des Landesamtes für Natur und Umwelt Schleswig-Holstein
Hartman JC, Gyimesi A, Prinsen HAM (2010) Veldonderzoek naar draadslachtoffers en vliegbewegingen bij een gemarkeerde 150 kV hoogspanningslijn. Rapportnr. 10-082, Bureau Waardenburg bv, Culemborg
Hötker H (2006) Auswirkungen des ‘Repowering’ von Windkraftanlagen auf Vögel und Fledermäuse. Michael-Otto-Institut im NABU-Forschungs—und Bildungszentrum für Feuchtgebiete und Vogelschutz, Berghusen
Jain A, Kerlinger P, Curry R, Slobodnik L, Lehman M (2009) Annual report for the maple ridge wind power project. Post-construction bird and bat fatality study—2008. Seracuse, New York, USA
Janss GFE (2000) Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol Cons 95:353–359
Kahlert J, Leito A, Laubek B, Luigujõe L, Kuresoo A, Aaen K, Luud A (2012) Factors affecting the flight altitude of migrating waterbirds in Western Estonia. Ornis Fenn 89:241–253
Klop E, Brenninkmeijer A (2014a) Monitoring aanvaringsslachtoffers Windpark Eemshaven 2009–2014. Eindrapportage vijf jaar monitoring. A&W-rapport 1975. Altenburg & Wymenga ecologisch onderzoek bv, Feanwâlden
Klop E, Brenninkmeijer A (2014b) Vervolgmonitoring vogelslachtoffers hoogspanningslijnen Eemshaven. Jaarrapportage 2013–2014. A&W-rapport 2062. Altenburg & Wymenga ecologisch onderzoek bv, Feanwâlden
Koops FBJ (1979) Een miljoen draadslachtoffers, wat kunnen we er tegen doen? Lepelaar 63:20–21
Korner-Nievergelt F, Korner-Nievergelt P, Behr O, Niermann I, Brinkmann R, Hellriegel B (2011) A new method to determine bird and bat fatality at wind energy turbines from carcass searches. Wildl Biol 17:350–363
Korner-Nievergelt F, Behr O, Brinkmann R, Etterson M, Huso MMP, Dalthorp D, Korner-Nievergelt P, Roth T, Niermann I (2015) Mortality estimation from carcass searches using the R-package carcass—a turorial. Wildl Biol 21:30–43
Ledec GC, Rapp KW, Aiello RG (2011) Greening the wind: environmental and social considerations for wind power development in Latin America and beyond (conference ed). The World Bank, Washington, DC. Report www.tinyurl.com/GreeningTheWind
Loss SR, Will T, Marra PP (2013) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol Cons 168:201–209
Péron G, Hines JE, Nichols JD, Kendall WL, Peters KA, Mizrahi DS (2013) Estimation of bird and bat mortality at wind-power farms with superpopulation models. J Appl Ecol 50:902–911
Pettersson J (2011) Night migration of songbirds and waterfowl at the Utgrunden off-shore wind farm—A radar-assisted study in southern Kalmar Sound. Report 6438, Swedish Environmental Protection Agency, Bromma, Sweden
Ponce C, Alonso JC, Argandoña G, García Fernández A, Carrasco M (2010) Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim Cons 13:603–612
R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
Rydell J, Engström H, Hedenström A, Larsen JK, Pettersson J, Green M (2012) The effects of wind power on birds and bats: a synthesis. Report 6511, Swedish Environmental Protection Agency, Stockholm
Smallwood KS (2007) Estimating wind turbine-caused bird mortality. J Wildl Manage 71:2781–2791
Winkelman JE (1992) De invloed van de Sep-proefwindcentrale te Oosterbierum (Fr.) op vogels. 1 Aanvaringsslachtoffers. RIN-rapport 92, Rijksinstituut voor Natuurbeheer, Arnhem
Acknowledgements
Jan van der Kamp and Klaas van Dijk carried out most fatality searches. Furthermore, Mark Koopmans, Kim Meijer, Mirte Greve, Marten Sikkema, Janne Ouwehand, Reinder Wissman, Daan Vreugdenhil, Olga Stoker, Ronald de Jong and Franske Hoekema contributed to collecting fatality data. Olga, Ronald and Franske also edited GIS data and Franske made the maps. The students Gijsbert Knol and Andrea Vos contributed to the search and predation trials. Christa van der Weyde, Leo Bruinzeel and Elske Tielens helped in analyses and reporting and Marcel Kersten provided statistical and methodological support. We are also grateful to two anonymous referees for their helpful comments on earlier versions of this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Brenninkmeijer, A., Klop, E. (2017). Bird Mortality in Two Dutch Wind Farms: Effects of Location, Spatial Design and Interactions with Powerlines. In: Köppel, J. (eds) Wind Energy and Wildlife Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-51272-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-51272-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51270-9
Online ISBN: 978-3-319-51272-3
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)