Advertisement

A Large-Scale, Multispecies Assessment of Avian Mortality Rates at Land-Based Wind Turbines in Northern Germany

  • Thomas GrünkornEmail author
  • Jan Blew
  • Oliver Krüger
  • Astrid Potiek
  • Marc Reichenbach
  • Jan von Rönn
  • Hanna Timmermann
  • Sabrina Weitekamp
  • Georg Nehls
Chapter

Abstract

Collisions of birds with wind turbines are a focal point when discussing the implications of renewable energies on nature conservation. The project “Prognosis and assessment of collision risks of birds at wind turbines in northern Germany” (PROGRESS) focused on the extent and consequences of bird mortality at wind turbines.

Collision victims were searched in five search efforts from spring 2012 to spring 2014 (three spring and two autumn field searches of 12 weeks). 46 different wind farms were examined. The total searched transect length amounted to 7672 km. With a total of 291 birds found, an average of one bird was found every 27 km. Common bird species with habitat use (feeding and staging) of the wind farm area prevail the list of fatalities found. Birds of prey did not dominate the list. Nocturnal broad front migratory songbirds (especially thrush species) were hardly represented among the fatalities. The total number of fatalities was estimated incorporating search efficiency and carcass removal experiments.

An extrapolation of the results for the entire project area leads to an annual mortality of around 8500 Common buzzards, 11,300 Wood pigeons and 13,000 Mallards. Based on the breeding population in the project area this translates to 0.5% of Wood pigeons, 5.0% of Mallards and 7% of Common buzzards (assuming 50% floaters).

Results of vantage point watches indicate that the species-specific collision risk with wind turbines largely differs between species as a result of clear behavioural differences.

For the vast majority of wind farms the numbers of collision victims predicted by the Band-model were clearly below the number of collision victims estimated from carcass searches. The suitability of the Band-model for the evaluation of an anticipated collision risk for a planned wind farm at an ‘average’ onshore site is limited.

Four modelled populations of Common buzzard in northern Germany are predicted to decline when incorporating the median estimates of additional mortality derived from fatality estimates.

Statutory species protection conflicts might not always be adequately solvable for an individual project. Therefore, overarching solutions are required to accompany the further expansion of wind farms, which ensure that this does not lead to a severe decline of certain bird species that are particularly affected by collisions. Specifically, the following strategies need to be addressed:
  • Large-scale wildlife conservation programs e.g. for Red kites and Common buzzards that improve habitats, particularly in terms of food availability

  • Identification of species-specific density centres that are of particular importance as source populations, and assessing targeted measures to protect and promote them,

  • Development of concepts and practical testing of a post-construction species protection support in terms of their effectiveness and their economic effects.

  • Increased research efforts in terms of scale and addressing cumulative effects.

Keywords

Wind turbine Collision Search efficiency Carcass removal Vantage point watch Band-Model Population projections Guidelines Site planning 

References

  1. Brinkmann R, Behr O, Niermann I, Reich M (eds) (2011) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlage. Umwelt und Raum Bd. 4. Civillier Verlag, Göttingen, p 457Google Scholar
  2. Caswell H (2001) Matrix population models, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  3. Chamberlain DE, Rehfisch MR, Fox AD, Desholm M, Anthony SJ (2006) The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis 148:198–202CrossRefGoogle Scholar
  4. Dahl EL, May R, Nygård T, Aström J, Diserud O (2015) Repowering Smøla wind-power plant. An assessment of avian conflicts. NINA Report, 41Google Scholar
  5. De Lucas M, Janss GFE, Whitfield DP, Ferrer M (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. J Appl Ecol 45:1695–1703CrossRefGoogle Scholar
  6. Douglas DJT, Follestad A, Langston RHW, Pearce-Higgins JW, Lehikoinen A (2012) Modelled sensitivity of avian collision rate at wind turbines varies with number of hours of flight activity input data. Ibis 154(4):858–861CrossRefGoogle Scholar
  7. Eichhorn M, Johst K, Seppelt R, Drechsler M (2012) Model-based estimation of collision risks of predatory birds with wind turbines. Ecol Soc 17(2):12Google Scholar
  8. Ferrer M, de Lucas M, Janss GFE, Casado E, Muñoz AR, Bechard MJ, Calabuig CP (2012) Weak relationship between risk assessment studies and recorded mortality in wind farms. J Appl Ecol 49(1):38–46CrossRefGoogle Scholar
  9. Grünkorn T (2014) Rückgang des Mäusebussards im Landesteil Schleswig. Jahresbericht Jagd und Artenschutz 2014. MELUR Schleswig-Holstein, pp 106–109Google Scholar
  10. Hötker H (2015) Überlebensrate und Reproduktion von Wiesenvögeln in Mitteleuropa. Vogelwarte 53:93–98Google Scholar
  11. Hötker H, Krone O, Nehls G (2013) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit., Michael-Otto-Institut im NABU, Leitnitz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, HusumGoogle Scholar
  12. Köppel J, Dahmen M, Helfrich J, Schuster E, Bulling L (2015) Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy’s wildlife implications. Environ Manage 54:744–755CrossRefGoogle Scholar
  13. Korner-Nievergelt F, Brinkmann R, Niermann I, Behr O (2013) Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models. PlosOne 8:e67997CrossRefGoogle Scholar
  14. Krüger O, Lindström J (2001) Lifetime reproductive success in Common Buzzard Buteo buteo: from individual variation to population demography. Oikos 93:260–273CrossRefGoogle Scholar
  15. LAG VSW (Länderarbeitsgemeinschaft der Vogelschutzwarten) (2015) Abstandsempfehlungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten in der Überarbeitung vom 15. April 2015, 29 SGoogle Scholar
  16. Langgemach T, Meyburg BU (2011) Funktionsraumanalyse - ein Zauberwort der Landschaftsplanung mit Auswirkung auf den Schutz von Schreiadlern (Aquila pomarina) und anderen Großvögeln. Berichte zum Vogelschutz 47(48):167–181Google Scholar
  17. Masden EA, Cook ASCP (2016) Avian collision risk models for wind energy impact assessments. Environ Impact Assess Rev 56:43–49CrossRefGoogle Scholar
  18. Masden EA, McCluskie A, Owen E, Langston RHW (2015) Renewable energy developments in an uncertain world: the case of offshore wind and birds in the UK. Mar Policy 51:169–172CrossRefGoogle Scholar
  19. May R, Hoel PL, Langston RH, Dahl EL, Bevanger K, Reitan O, Nygård T, Pedersen HC, Røskaft E, Stokke BG (2010) Collision risk in white-tailed eagles. Modelling collision risk using vantage point observations in Smøla wind-power plant. NINA Report 639, Trondheim, p 25Google Scholar
  20. May R, Nygård T, Dahl EL, Reitan O, Bevanger K (2011) Collision risk in white-tailed eagles. Modelling kernel-based collision risk using satellite telemetry data in Smøla wind-power plant. Tagungsband der Fachtagung: “May, 2011”, TrondheimGoogle Scholar
  21. May R, Reitan O, Bevanger K, Lorentsen SH, Nygård T (2015) Mitigating wind-turbine induced avian mortality: sensory, aerodynamic and cognitive constraints and options. Renew Sustain Energy Rev 42:170–181CrossRefGoogle Scholar
  22. MELUR & LLUR (Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein & Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein) (2013) Errichtung von Windenergieanlagen (WEA) innerhalb der Abstandsgrenzen der sogenannten potenziellen Beeinträchtigungsbereiche bei einigen sensiblen Großvogelarten - Empfehlungen für artenschutzfachliche Beiträge im Rahmen der Errichtung von WEA in Windeignungsräumen mit entsprechenden artenschutzrechtlichen VorbehaltenGoogle Scholar
  23. Meyburg BU, Meyburg C, Matthes J, Matthes H (2006) GPS-Satelliten-Telemetrie beim Schreiadler Aqulia pomarina: Aktionsraum und Territorialverhalten. Vogelwelt 127:127–144Google Scholar
  24. Rasran L, Thomsen KM (2013) Auswirkungen von Windenergieanlagen auf den Bestand und die Nistplatzwahl der Wiesenweihe Circus pygargus in Nordfriesland In: Hötker H, Krone O, Nehls G (eds) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Michael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, HusumGoogle Scholar
  25. SNH (Scottish Natural Heritage) (2010) Guidance: survey methods for use in assessing the impacts of onshore windfarms on bird communities. Scottish Natural Heritage, November 2005 (revised December 2010), 50 pGoogle Scholar
  26. SNH (Scottish Natural Heritage) (2010) Use of avoidance rates in the SNH wind farm collision risk model, 10 pGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Grünkorn
    • 1
    Email author
  • Jan Blew
    • 1
  • Oliver Krüger
    • 2
  • Astrid Potiek
    • 2
  • Marc Reichenbach
    • 3
  • Jan von Rönn
    • 1
  • Hanna Timmermann
    • 3
  • Sabrina Weitekamp
    • 3
  • Georg Nehls
    • 1
  1. 1.BioConsult SH GmbH & Co KGHusumGermany
  2. 2.Department of Animal BehaviourUniversity of BielefeldBielefeldGermany
  3. 3.ARSU GmbHOldenburgGermany

Personalised recommendations