Skip to main content

Red Kites and Wind Farms—Telemetry Data from the Core Breeding Range

Abstract

Red Kites (Milvus milvus) are the second most often reported species in relation to collisions with wind turbines in Germany. Germany houses more than half of the world’s population of Red Kites and, therefore, has a high international responsibility for the protection of this species. The German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety funded a field study to investigate why Red Kites and other birds of prey frequently collide with wind turbines, and which risk mitigation measures are most appropriate. The study took place in the core of the Red Kite global breeding range in Sachsen-Anhalt between 2007 and 2010. Ten breeding adult Red Kites were equipped with radio tags (seven birds) or GPS satellite transmitters (three birds). Each bird was tracked for one or two breeding and non-breeding seasons. Data on flight height and habitat preference were collected by visual observations. The collision risk was modeled in relation to the nest’s proximity to wind turbines. It was found that Red Kites spent most of their time close to their nests. Most (54%) of the fixes were located within a radius of 1000 m around nests. It is important to note that the data did not indicate displacement of Red Kites by wind farms. Red Kites frequently visited wind farms for foraging and spent about 25% of their flight time within the swept heights of rotors of the most common wind turbines present in the study sites. The probability of closely approaching a wind farm significantly decreased with the distance between wind turbines and nests. Furthermore, the collision probability model predicted a sharp decrease of collision risk with increasing distance from the nest. The results clearly indicate that implementing buffer zones around nest sites reduces collision risk.

Keywords

  • Red Kites
  • Wind farms
  • Telemetry data
  • Collision
  • Buffer zones

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-51272-3_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-51272-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aebischer A (2009) Der Rotmilan. Haupt Verlag, Bern

    Google Scholar 

  • Band W, Madders M, Whitfield DP (2007) Developing field and analytical methods to assess avian collision risk at wind farms. In: de Lucas M, Janss G, Ferrer M (eds) Birds and wind power. Lynx Edicions, Barcelona

    Google Scholar 

  • Knott J, Newbery P, Barov, B (2009) Action plan for the red kite Milvus milvus in the European Union. RSPB and BirdLife International, on behalf of the European Commission, Sandy

    Google Scholar 

  • Bauer HG, Bezzel E, Fiedler W (2005) Das Kompendium der Vögel Mitteleuropas. Nonpasseriformes-Nichtsperlingsvögel, AULA, Wiebelsheim

    Google Scholar 

  • Bellebaum J, Korner-Nievergelt F, Dürr T, Mammen U (2013) Wind turbine fatalities approach a level of concern in a raptor population. J Nat Conserv 21:394–400

    CrossRef  Google Scholar 

  • BirdLife International (2015) European red list of birds. http://www.birdlife.org/europe-and-central-asia/european-red-list-birds-0. Accessed 7 Dec 2015

  • Bundesregierung der Bundesrepublik Deutschland (2015) Energiewende. http://www.bundesregierung.de/Content/DE/StatischeSeiten/Breg/Energiekonzept/1-EnergieErzeugen/23-11-11-wind.html. Accessed 19 Oct 2015

  • Carrete M, Sanchez-Zapata JA, Benitez JR, Lobon M, Donazar JA (2010) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961

    CrossRef  Google Scholar 

  • Dahl EL, Bevanger K, Nygård T, Røskaft E, Stokke BG (2012) Reduced breeding success in white-tailed eagles at Smøla windfarm, western Norway, is caused by mortality and displacement. Biol Conserv 145:79–85

    CrossRef  Google Scholar 

  • Drewitt AL, Langston RHW (2008) Collision effects of wind-power generators and other obstacles on birds. Ann NY Acad Sci 1134:233–266

    CrossRef  Google Scholar 

  • Dürr T (2004) Vögel als Anflugopfer an Windenergieanlagen—ein Einblick in die bundesweite Fundkartei. Bremer Beitr Naturk Naturschutz 7221–228

    Google Scholar 

  • Eichhorn M, Drechsler M (2010) Spatial trade-offs between wind power production and bird collision avoidance in agricultural landscapes. Ecol Soc 15:10 (online)

    Google Scholar 

  • Garvin JC, Jenelle CS, Drake D, Grodsky SM (2011) Response of raptors to a windfarm. J Appl Ecol 48:199–209

    CrossRef  Google Scholar 

  • Gedeon K, Grüneberg C, Mitschke A, Sudfeldt C (2015) Atlas Deutscher Brutvogelarten. Stiftung Vogelmonitoring Deutschland, Dachverband Deutscher Avifaunisten, Münster

    Google Scholar 

  • Grajetzky B, Nehls G (2013) Wiesenweihentelemetrie. In: Hötker H, Krone O, Nehls G (eds) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, FKZ 0327684, Michael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, Husum

    Google Scholar 

  • Harris S, Cresswell WJ, Forde PG, Trewhella WJ, Woollard T, Wray S (1990) Home-range analysis using radio-tracking data - a review of problems and techniques particularly as applied to the study of mammals. Mamm Rev 20:97–123

    CrossRef  Google Scholar 

  • Hötker H, Krone O, Nehls G (eds) (2013a) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, FKZ 0327684, Michael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, Husum

    Google Scholar 

  • Hötker H, Dürr T, Grajetzky B, Grünkorn T, Joest R, Krone O, Mammen K, Mammen U, Nehls G, Rasran L, Resetaritz A, Treu G (2013b) Fazit, Risikoeinschätzung, Minimierung von Konflikten, Empfehlungen für die Praxis, Forschungsbedarf. In: Hötker H, Krone O, Nehls G (eds) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, FKZ 0327684, Mi chael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, Husum

    Google Scholar 

  • Kenward RE (1992) Quantity versus quality: programmed collection and analysis of radio-tacking data. In: Priede IG, Swift SM (eds) Wildlife Telemetry. Remote Monitoring and Tracking of Animals. Ellis Horwood, London, pp 231–246

    Google Scholar 

  • Kenward RE (2001) A manual for wildlife radio tagging. Academic Press, London

    Google Scholar 

  • Länder-Arbeitsgemeinschaft der Vogelschutzwarten (2007) Abstandsregelungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Ber z Vogels 44:151–153

    Google Scholar 

  • Länder-Arbeitsgemeinschaft der Vogelschutzwarten (2014) Abstandsempfehlungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Ber z Vogels 51:15–42

    Google Scholar 

  • Landesamt für Umwelt (2014) Zentrale Fundkartei über Anflugopfer an Windenergieanlagen (WEA). Download 11th Dec. 2014. Available via http://www.lugv.brandenburg.de/cms/detail.php/bb1.c.321381.de

  • Langston R (2002) Wind Energy and Birds: Results and Requirements. RSPB Research Report No. 2. RSPB, Sandy, pp 1–54

    Google Scholar 

  • Mammen U, Mammen K, Heinrichs N, Resetaritz A (2011) Red Kite (Milvus milvus) fatalities at wind turbines—why do they occur and how are they to prevent? In: May R, Bevanger K (eds) Proceedings Conference on Wind energy and Wildlife impacts. 108. NINA Report 693, Trondheim, Norway

    Google Scholar 

  • Mammen K, Mammen U, Resetaritz A (2013) Rotmilan. In: Hötker H, Krone O, Nehls G (eds) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, FKZ 0327684, Michael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, Husum

    Google Scholar 

  • Martínez-Abraín A, Tavecchia G, Regan HM, Jiménez J, Surroca M, Oro D (2012) Effects of wind farms and food scarcity on a large scavenging bird species following an epidemic of bovine spongiform encephalopathy. J Appl Ecol 49:109–117

    CrossRef  Google Scholar 

  • May R, Hoel PL, Langston R, Dahl E, Bevanger K, Reitan O, Nygård T, Pedersen HC, Røskaft E, Stokke BG (2010) Collision risk in white-tailed eagles. Modelling collision risk using vantage point observations in Smøla wind-power plant. 1–25. NINA Report 639, Trondheim, Norway

    Google Scholar 

  • Mebs T, Schmidt D (2006) Die Greifvögel Europas. Nordafrikas und Vorderasiens, Franckh-Kosmos, Stuttgart

    Google Scholar 

  • Ortlieb R (1989) Der Rotmilan. 3. Aufl. Ziemsen (Die neue Brehm Bücherei 532), Wittenberg-Lutherstadt

    Google Scholar 

  • Rasran L, Dürr T (2013) Kollisionen von Greifvögeln an Windenergieanlagen—Analyse der Fundumstände. In: Hötker H, Krone O, Nehls G (eds) Greifvögel und Windkraftanlagen: Problemanalyse und Lösungsvorschläge. Schlussbericht für das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, FKZ 0327684, Michael-Otto-Institut im NABU, Leibniz-Institut für Zoo- und Wildtierforschung, BioConsult SH, Bergenhusen, Berlin, Husum

    Google Scholar 

  • Sæther B-E Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecol 81:642–653

    Google Scholar 

  • Schaub M (2012) Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biol Conserv 155:111–118

    CrossRef  Google Scholar 

  • Smallwood KS (2007) Estimating wind turbine-caused bird mortality. J Wildl Manage 71:2781–2791

    CrossRef  Google Scholar 

  • Smallwood KS, Thelander C (2008) Bird Mortality in the Altamont Pass Wind Resource Area, California. J Wildl Manage 72:215–223

    CrossRef  Google Scholar 

  • Smart J, Amar A, Sim IMW, Etheridge B, Cameron D, Christie G, Wilson JD (2010) Illegal killing slows population recovery of a re-introduced raptor of high conservation concern—the red kite Milvus milvus. Biol Conserv 143:1278–1286

    CrossRef  Google Scholar 

  • Sudfeldt C, Dröschmeister R, Frederking W, Gedeon K, Gerlach B, Grüneberg C, Karthäuser J, Langgemach T, Schuster B, Trautmann S, Wahl J (2013) Vögel in Deutschland—2013. DDA, BfN, LAG VSW, Münster

    Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ISBN 3-900051-07-0. Wien. http://www.R-project.org

    Google Scholar 

  • Urquhart B (2010) Use of avoidance rates in the SNH wind farm collision risk model. SNH Avoidance Rate Information & Guidance Note, Scottish Natural Heritage 10

    Google Scholar 

  • Whitfield DP, Madders M. (2006a) A review of the impacts of wind farms on Hen Harriers Circus cyaneus and an estimation of collision avoidance rates. Natural Research LTD, Banchory

    Google Scholar 

  • Whitfield DP, Madders, M (2006b) Flight height in the Hen Harrier Circus cyaneus and its incorporation in wind turbine collision risk modelling. Natural Research Information, Note 2, Banchory

    Google Scholar 

Download references

Acknowledgements

We would like to thank Alexander Resetaritz, Lukas Kratzsch and Ralf Siano for their help during the field work. We received valuable advice from Jutta Leyrer, who also improved the English of the manuscript.

We thank the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety for the financial support and we are grateful to the Project Management Jülich, in particular Tobias Verfuß, for their patience and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Hötker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hötker, H., Mammen, K., Mammen, U., Rasran, L. (2017). Red Kites and Wind Farms—Telemetry Data from the Core Breeding Range. In: Köppel, J. (eds) Wind Energy and Wildlife Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-51272-3_1

Download citation