Skip to main content

Future Research Directions to Reconcile Wind Turbine–Wildlife Interactions

  • Chapter
  • First Online:
Wind Energy and Wildlife Interactions

Abstract

Concurrent with the development of wind energy, research activity on wind energy generation and wildlife has evolved significantly during the last decade. This chapter presents an overview of remaining key knowledge gaps, consequent future research directions and their significance for management and planning for wind energy generation. The impacts of wind farms on wildlife are generally site-, species- and season-specific and related management strategies and practices may differ considerably between countries. These differences acknowledge the need to consider potential wildlife impacts for each wind farm project. Still, the ecological mechanisms guiding species’ responses and potential vulnerability to wind farms can be expected to be fundamental in nature. A more cohesive understanding of the causes, patterns, mechanisms, and consequences of animal movement decisions will thereby facilitate successful mitigation of impacts. This requires planning approaches that implement the mitigation hierarchy effectively to reduce risks to species of concern. At larger geographical scales, population-level and cumulative impacts of multiple wind farms (and other anthropogenic activity) need to be addressed. This requires longitudinal and multiple-site studies to identify species-specific traits that influence risk of mortality, notably from collision with wind turbines, disturbance or barrier effects. In addition, appropriate pre- and post-construction monitoring techniques must be utilized. Predictive modelling to forecast risk, while tackling spatio-temporal variability, can guide the mitigation of wildlife impacts at wind farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnett EB, Huso MMP, Schirmacher MR, Hayes JP (2011) Altering turbine speed reduces bat mortality at wind-energy facilities. Front Ecol Environ 9:209–214

    Article  Google Scholar 

  • Arnett EB, May RF (2016) Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Hum Wildl Interact 10:28–41

    Google Scholar 

  • Arvesen A, Hertwich E (2012) Assessing the life cycle environmental impacts off wind power: a review of present knowledge and research needs. Renew Sustain Energy Rev 16:5994–6006

    Article  Google Scholar 

  • Baerwald EF, Barclay RMR (2009) Geographic variation in activity and fatality of migratory bats at wind energy facilities. J Mammal 90:1341–1349

    Article  Google Scholar 

  • Baerwald EF, Edworthy J, Holder M, Barclay RMR (2009) A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J Wildl Manage 73:1077–1081

    Article  Google Scholar 

  • Barclay RMR, Baerwald EF, Gruver JC (2007) Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height. Can J Zool 85:381–387

    Article  Google Scholar 

  • Bernardino J, Bispo R, Costa H, Mascarenhas M (2013) Estimating bird and bat fatality at wind farms: a practical overview of estimators, their assumptions and limitations. NZ J Zool 40:63–74

    Article  Google Scholar 

  • Boehlert GW, Gill AB (2010) Environmental and ecological effects of ocean renewable energy development. A current synthesis. Oceanography 23:68–81

    Article  Google Scholar 

  • Bohrer G, Zhu K, Jones RL, Curtis PS (2013) Optimizing wind power generation while minimizing wildlife impacts in an urban area. PLoS ONE 8:e56036

    Article  CAS  Google Scholar 

  • Bradbury G, Trinder M, Furness B, Banks AN, Caldow RW, Hume D (2014) Mapping seabird sensitivity to offshore wind farms. PLoS ONE 9:e106366

    Article  Google Scholar 

  • Bright J, Langston R, Bullman E, Evans R, Gardner S, Pearce-Higgins J (2008) Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol Conserv 141:2342–2356

    Article  Google Scholar 

  • Burkhard B, Opitz S, Lenhart H, Ahrendt K, Garthe S, Mendel B, Windhorst W (2011) Ecosystem based modeling and indication of ecological integrity in the German North Sea—case study offshore wind parks. Ecol Ind 11:168–174

    Article  Google Scholar 

  • Cleasby IR, Wakefield ED, Bearhop S, Bodey TW, Votier SC, Hamer KC, Österblom H (2015) Three-dimensional tracking of a wide-ranging marine predator: flight heights and vulnerability to offshore wind farms. J Appl Ecol 52:1474–1482

    Google Scholar 

  • Cole SG (2011) Wind power compensation is not for the birds: an opinion from an environmental economist. Restor Ecol 19:147–153

    Article  Google Scholar 

  • Cowell R, Bristow G, Munday M (2011) Acceptance, acceptability and environmental justice: the role of community benefits in wind energy development. J Environ Planning Manage 54:539–557

    Article  Google Scholar 

  • Cryan PM, Barclay RM (2009) Causes of bat fatalities at wind turbines: Hypotheses and predictions. J Mammal 90:1330–1340

    Article  Google Scholar 

  • Cryan PM, Gorresen PM, Hein CD, Schirmacher MR, Diehl RH, Huso MM, Hayman DTS, Fricker PD, Bonaccors FJ, Johnson DH, Heist K, Dalton DC (2014) Behavior of bats at wind turbines. Proc Natl Acad Sci 111:15126–15131

    Article  CAS  Google Scholar 

  • Dahl EL, May R, Nygård T, Åstrøm, J, Diserud OH (2015) Repowering Smøla wind power plant. An assessment of avian conflicts. NINA Report 1135. Norwegian Institute for Nature Research, Trondheim, Norway

    Google Scholar 

  • de Lucas M, Ferrer M, Bechard MJ, Muñoz AR (2012) Griffon vulture mortality at wind farms in southern Spain: distribution of fatalities and active mitigation measures. Biol Conserv 147:184–189

    Article  Google Scholar 

  • Diffendorfer JE, Beston JA, Merrill MD, Stanton JC, Corum MD, Loss SR, Thogmartin WE, Johnson DH, Erickson RA, Heist KW (2015) Preliminary methodology to assess the national and regional impact of U.S. wind energy development on birds and bats. Scientific investigations report 2015-5066. U.S.G. Survey, Reston, Virginia (USA)

    Google Scholar 

  • Drewitt AL, Langston RH (2008) Collision effects of wind-power generators and other obstacles on birds. Ann N Y Acad Sci 1134:233–266

    Article  Google Scholar 

  • Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148, Suppl. 1:29–42

    Google Scholar 

  • Exo KM, Hüppop O, Garthe S (2003) Birds and offshore wind farms: a hot topic in marine ecology. Wader Study Group Bull 100:50–53

    Google Scholar 

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11:305–313

    Article  Google Scholar 

  • Furness RW, Wade HM, Masden EA (2013) Assessing vulnerability of marine bird populations to offshore wind farms. J Environ Manage 119:56–66

    Article  Google Scholar 

  • Gardiner SM (2011) A perfect moral storm. The ethical tragedy of climate change. Oxford University Press, New York

    Book  Google Scholar 

  • Gardner TA, Von Hase A, Brownlie S, Ekstrom JMM, Pilgrim JD, Savy CE, Stephens RTT, Treweek JO, Ussher GT, Ward G, Ten Kate K (2013) Biodiversity offsets and the challenge of achieving no net loss. Conserv Biol 27:1254–1264

    Article  Google Scholar 

  • Garthe S, Hüppop O (2004) Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. J Appl Ecol 41:724–734

    Article  Google Scholar 

  • Geißler G (2013) Strategic environmental assessments for renewable energy development—comparing the United States and Germany. J Environ Assess Policy Manage 15:1340003

    Article  Google Scholar 

  • Geißler G, Köppel J, Gunther P (2013) Wind energy and environmental assessments—a hard look at two forerunners’ approaches: Germany and the United States. Renew Energy 51:71–78

    Article  Google Scholar 

  • Gill AB (2005) Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J Appl Ecol 42:605–615

    Article  Google Scholar 

  • Gill AB, Bartlett M, Thomsen F (2012) Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J Fish Biol 81:664–695

    Article  CAS  Google Scholar 

  • Gill JA, Norris K, Sutherland WJ (2001) Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv 97:265–268

    Article  Google Scholar 

  • Hammond PS, Macleod K, Berggren P, Borchers DL, Burt L, Cañadas A, Desportes G, Donovan GP, Gilles A, Gillespie D, Gordon J, Hiby L, Kuklik I, Leaper R, Lehnert K, Leopold M, Lovell P, Øien N, Paxton CGM, Ridoux V, Rogan E, Samarra F, Scheidat M, Sequeira M, Siebert U, Skov H, Swift R, Tasker ML, Teilmann J, Van Canneyt O, Vázquez JA (2013) Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biol Conserv 164:107–122

    Article  Google Scholar 

  • Hastik R, Basso S, Geitner C, Haida C, Poljanec A, Portaccio A, Vrščaj B, Walzer C (2015) Renewable energies and ecosystem service impacts. Renew Sustain Energy Rev 48:608–623

    Article  Google Scholar 

  • Heinis F, de Jong CAF, Rijkswaterstaat Underwater Sound Working Group (2015) Framework for assessing ecological and cumulative effects of offshore wind farms. Cumulative effects of impulsive underwater sound on marine mammals. TNO 2015 R10335-A. M.o.E.A.M.o.I.a.t. Environment, Den Haag, the Netherlands

    Google Scholar 

  • Huesca-Pérez ME, Sheinbaum-Pardo C, Köppel J (2016) Social implications of siting wind energy in a disadvantaged region—the case of the Isthmus of Tehuantepec, Mexico. Renew Sustain Energy Rev 58:952–965

    Article  Google Scholar 

  • Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148:90–109

    Article  Google Scholar 

  • Inger R, Attrill MJ, Bearhop S, Broderick AC, James Grecian W, Hodgson DJ, Mills C, Sheehan E, Votier SC, Witt MJ, Godley BJ (2009) Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J Appl Ecol 46:1145–1153

    Google Scholar 

  • IPCC (2011) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  • Islam MR, Mekhilef S, Saidur R (2013) Progress and recent trends of wind energy technology. Renew Sustain Energy Rev 21:456–468

    Article  Google Scholar 

  • Jay S (2010) Strategic environmental assessment for energy production. Energy Policy 38:3489–3497

    Article  Google Scholar 

  • Johnson CJ (2013) Identifying ecological thresholds for regulating human activity: effective conservation or wishful thinking? Biol Conserv 168:57–65

    Article  Google Scholar 

  • Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14:1052–1061

    Article  Google Scholar 

  • Kopnina H (2013) Forsaking nature? Contesting ‘biodiversity’ through competing discourses of sustainability. J Educ Sustain Dev 7:51–63

    Article  Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • Köppel J, Dahmen M, Helfrich J, Schuster E, Bulling L (2014) Cautious but committed: moving toward adaptive planning and operation strategies for renewable energy’s wildlife implications. Environ Manage 54:744–755

    Article  Google Scholar 

  • Lindeboom H, Degraer S, Dannheim J, Gill AB, Wilhelmsson D (2015) Offshore wind park monitoring programmes, lessons learned and recommendations for the future. Hydrobiologia 756:169–180

    Article  Google Scholar 

  • Lindeboom HJ, Kouwenhoven HJ, Bergman MJN, Bouma S, Brasseu S, Daan R, Fijn RC, de Haan D, Dirksen S, van Hal R, Hille Ris Lambers R, ter Hofstede R, Krijgsveld KL, Leopold M, Scheidat M (2011) Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environ Res Lett 6:035101

    Article  Google Scholar 

  • Loss SR, Will T, Marra PP (2013) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol Conserv 168:201–209

    Article  Google Scholar 

  • Madsen J, Boertmann D (2008) Animal behavioral adaptation to changing landscapes: spring-staging geese habituate to wind farms. Landscape Ecol 23:1007–1011

    Article  Google Scholar 

  • Madsen PT, Wahlberg M, Tougaard J, Lucke K, Tyack P (2006) Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar Ecol Prog Ser 309:279–295

    Article  Google Scholar 

  • Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca C, Mascarenhas M, Bernardino J (2014) Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol Conserv 179:40–52

    Article  Google Scholar 

  • Martin GR (2012) Through birds’ eyes: insights into avian sensory ecology. J Ornithol 153:23–48

    Article  Google Scholar 

  • Masden EA, Cook ASCP (2016) Avian collision risk models for wind energy impact assessments. Environ Impact Assess Rev 56:43–49

    Article  Google Scholar 

  • Masden EA, Fox AD, Furness RW, Bullman R, Haydon DT (2010a) Cumulative impact assessments and bird/wind farm interactions: developing a conceptual framework. Environ Impact Assess Rev 30:1–7

    Article  Google Scholar 

  • Masden EA, Haydon DT, Fox AD, Furness RW (2010b) Barriers to movement: modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Mar Pollut Bull 60:1085–1091

    Article  CAS  Google Scholar 

  • Masden EA, Reeve R, Desholm M, Fox AD, Furness RW, Haydon DT (2012) Assessing the impact of marine wind farms on birds through movement modelling. J R Soc Interface 9:2120–2130

    Article  Google Scholar 

  • May RF (2015) A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol Conserv 190:179–187

    Article  Google Scholar 

  • May R (2016) Mitigation for birds. In: Perrow M (ed) Wildlife and windfarms: conflicts and solutions—volume 2. Onshore: Monitoring and mitigation. Pelagic Publishing, Exeter, United Kingdom

    Google Scholar 

  • May R, Reitan O, Bevanger K, Lorentsen SH, Nygård T (2015) Mitigating wind-turbine induced avian mortality: sensory, aerodynamic and cognitive constraints and options. Renew Sustain Energy Rev 42:170–181

    Article  Google Scholar 

  • Michelsen O, Lindner J (2015) Why include impacts on biodiversity from land use in LCIA and how to select useful indicators? Sustainability 7:6278–6302

    Article  Google Scholar 

  • Nabe-Nielsen J, Sibly RM, Tougaard J, Teilmann J, Sveegaard S (2014) Effects of noise and bycatch on a Danish harbour porpoise population. Ecol Model 272:242–251

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059

    Article  CAS  Google Scholar 

  • Papathanasopoulou E, Beaumont N, Hooper T, Nunes J, Queirós AM (2015) Energy systems and their impacts on marine ecosystem services. Renew Sustain Energy Rev 52:917–926

    Article  Google Scholar 

  • Pearce-Higgins JW, Stephen L, Douse A, Langston RHW (2012) Greater impacts of wind farms on bird populations during construction than subsequent operation: results of a multi-site and multi-species analysis. J Appl Ecol 49:386–394

    Article  Google Scholar 

  • Peste F, Paula A, da Silva LP, Bernardino J, Pereira P, Mascarenhas M, Costa H, Vieira J, Bastos C, Fonseca C, Pereira MJR (2015) How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environ Impact Assess Rev 51:10–22

    Article  Google Scholar 

  • Petrova MA (2016) From NIMBY to acceptance: toward a novel framework—VESPA—for organizing and interpreting community concerns. Renew Energy 86:1280–1294

    Article  Google Scholar 

  • Phylip-Jones J, Fischer TB (2014) Strategic environmental assessment (SEA) for wind energy planning: lessons from the United Kingdom and Germany. Environ Impact Assess Rev 50:203–212

    Google Scholar 

  • Portman M (2011) Marine spatial planning: achieving and evaluating integration. ICES J Mar Sci 68:2191–2200

    Article  Google Scholar 

  • Portman M (2015) Marine spatial planning in the Middle East: crossing the policy-planning divide. Marine Policy 61:8–15

    Article  Google Scholar 

  • Santangeli A, Katzner T (2015) A call for conservation scientists to evaluate opportunities and risks from operation of vertical axis wind turbines. Frontiers Ecol Evol 3:68

    Google Scholar 

  • Schaub M (2012) Spatial distribution of wind turbines is crucial for the survival of red kite populations. Biol Conserv 155:111–118

    Article  Google Scholar 

  • Schaub M, Kéry M (2012) Combining information in hierarchical models improves inferences in population ecology and demographic population analyses. Anim Conserv 15:125–126

    Article  Google Scholar 

  • Scheidat M, Tougaard J, Brasseur S, Carstensen J, van Polanen PT, Teilmann J, Reijnders P (2011) Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ Res Lett 6:025102

    Article  Google Scholar 

  • Schroeder DM, Love MS (2004) Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight. Ocean Coast Manag 47:21–48

    Article  Google Scholar 

  • Schuster E, Bulling L, Koppel J (2015) Consolidating the state of knowledge: a synoptical review of wind energy’s wildlife effects. Environ Manage 56:300–331

    Article  Google Scholar 

  • Smallwood KS (2013) Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wildl Soc Bull 37:19–33

    Article  Google Scholar 

  • Smallwood KS, Neher L, Bell DA (2009) Map-based repowering and reorganization of a wind resource area to minimize burrowing owl and other bird fatalities. Energies 2:915–943

    Article  Google Scholar 

  • Stewart GB, Pullin AS, Coles CF (2007) Poor evidence-base for assessment of windfarm impacts on birds. Environ Conserv 34:1

    Article  Google Scholar 

  • Thaxter CB, Ross-Smith VH, Bouten W, Clark NA, Conway GJ, Rehfisch MM, Burton NH (2015) Seabird–wind farm interactions during the breeding season vary within and between years: a case study of lesser black-backed gull Larus fuscus in the UK. Biol Conserv 186:347–358

    Article  Google Scholar 

  • Tougaard J, Wright AJ, Madsen PT (2015) Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises. Mar Pollut Bull 90:196–208

    Article  CAS  Google Scholar 

  • Tsoutsos T, Tsitoura I, Kokologos D, Kalaitzakis K (2015) Sustainable siting process in large wind farms case study in Crete. Renew Energy 75:474–480

    Article  Google Scholar 

  • van Kuik GAM, Peinke J, Nijssen R, Lekou D, Mann J, Sørensen JN, Ferreira C, van Wingerden JW, Schlipf D, Gebraad P, Polinder H, Abrahamsen A, van Bussel GJW, Sørensen JD, Tavner P, Bottasso CL, Muskulus M, Matha D, Lindeboom HJ, Degraer S, Kramer O, Lehnhoff S, Sonnenschein M, Sørensen PE, Künneke RW, Morthorst PE, Skytte K (2016) Long-term research challenges in wind energy—a research agenda by the European Academy of Wind Energy. Wind Energy Sci 1:1–39

    Article  Google Scholar 

  • Voigt CC, Popa-Lisseanu AG, Niermann I, Kramer-Schadt S (2012) The catchment area of wind farms for European bats: a plea for international regulations. Biol Conserv 153:80–86

    Article  Google Scholar 

  • Walters K, Kosciuch K, Jones J (2014) Can the effect of tall structures on birds be isolated from other aspects of development? Wildl Soc Bull 38:250–256

    Article  Google Scholar 

  • Wang S, Wang S, Smith P (2015) Ecological impacts of wind farms on birds: questions, hypotheses, and research needs. Renew Sustain Energy Rev 44:599–607

    Article  Google Scholar 

  • Warren CR, Lumsden C, O’Dowd S, Birnie RV (2005) ‘Green on green’: public perceptions of wind power in Scotland and Ireland. J Environ Planning Manage 48:853–875

    Article  Google Scholar 

  • Welstead J, Hirst R, Keogh D, Robb G, Bainsfair R (2013) Research and guidance on restoration and decommissioning of onshore wind farms. Commissioned report no. 591. Scottish Natural Heritage, Inverness, UK

    Google Scholar 

  • Wilson JC, Elliott M (2009) The habitat-creation potential of offshore wind farms. Wind Energy 12:203–212

    Article  Google Scholar 

  • Wolsink M (2012) Wind power: basic challenge concerning social acceptance. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

May, R. et al. (2017). Future Research Directions to Reconcile Wind Turbine–Wildlife Interactions. In: Köppel, J. (eds) Wind Energy and Wildlife Interactions. Springer, Cham. https://doi.org/10.1007/978-3-319-51272-3_15

Download citation

Publish with us

Policies and ethics