Spatio-Temporal Shape Analysis of Cross-Sectional Data for Detection of Early Changes in Neurodegenerative Disease

  • Claire Cury
  • Marco Lorenzi
  • David Cash
  • Jennifer M. Nicholas
  • Alexandre Routier
  • Jonathan Rohrer
  • Sebastien Ourselin
  • Stanley Durrleman
  • Marc Modat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10126)

Abstract

The detection of pathological changes in neurodegenerative diseases that occur before clinical onset would be of great value for identifying suitable subjects and assessing drug efficacy in trials aimed at preventing or slowing onset. Using MRI derived volumetric information, researchers have been able to detect significant differences between patients in the presymptomatic phase of neurodegenerative diseases and healthy controls. However, volumetric studies provide only a summary representation of complex morphological changes. Shape analysis has already been successfully applied to model pathological features in neurodegeneration and represents a valuable instrument to model presymptomatic anatomical changes occurring in specific brain regions.

In this study we propose a computational framework to model group-wise spatio-temporal shape differences, and to statistically evaluate the effects of time and pathological components on the modeled variability. The proposed approach leverages the geodesic regression framework based on varifolds, and models the spatio-temporal shape variability via dimensionality reduction of the subject-specific “residual” transformations normalised in a common reference frame through parallel transport. The proposed approach is applied to patients with genetic variants of fronto-temporal dementia, and shows that shape differences in the posterior part of the thalamus can be observed several years before the appearance of clinical symptoms.

Keywords

Shape Thalamus Spatio-temporal geodesic regression FTD Parallel transport 

References

  1. 1.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)CrossRefGoogle Scholar
  2. 2.
    Benzinger, T.L.S., Blazey, T., Jack, C.R., et al.: Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc. Natl. Acad. Sci. 110(47), E4502–E4509 (2013)CrossRefGoogle Scholar
  3. 3.
    Cardoso, M.J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., Fox, N.C., Ourselin, S., ADNI: STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med. Image Anal. 17(6), 671–684 (2013)Google Scholar
  4. 4.
    Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cury, C., Glaunès, J.A., Colliot, O.: Diffeomorphic iterative centroid methods for template estimation on large datasets. In: Nielsen, F. (ed.) Geometric Theory of Information. Signals and Communication Technology, pp. 273–299. Springer International Publishing, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Datar, M., Muralidharan, P., Kumar, A., Gouttard, S., Piven, J., Gerig, G., Whitaker, R., Fletcher, P.T.: Mixed-effects shape models for estimating longitudinal changes in anatomy. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds.) STIA 2012. LNCS, vol. 7570, pp. 76–87. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33555-6_7 CrossRefGoogle Scholar
  7. 7.
    Durrleman, S., Allassonnire, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., Ayache, N.: Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape datas. Int. J. Comput. Vis. 103(1), 22–59 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)CrossRefGoogle Scholar
  10. 10.
    Durrleman, S., Prastawa, M., Gerig, G., Joshi, S.: Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 123–134. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_11 CrossRefGoogle Scholar
  11. 11.
    Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic shape regression in the framework of currents. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 718–729. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38868-2_60 CrossRefGoogle Scholar
  12. 12.
    Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)CrossRefGoogle Scholar
  13. 13.
    Kheyfets, A., Miller, W.A., Newton, G.A.: Schild’s ladder parallel transport procedure for an arbitrary connection. Int. J. Theor. Phys. 39(12), 2891–2898 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X., et al.: 4D registration of serial brain’s MR images: a robust measure of changes applied to Alzheimer’s disease. In: MICCAI Workshop, Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data (2010)Google Scholar
  15. 15.
    Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from schilds to pole ladder. J. Math. Imaging Vis. 50(1–2), 5–17 (2013)MATHGoogle Scholar
  16. 16.
    Lorenzi, M., Pennec, X., Frisoni, G.B., Ayache, N.: Disentangling normal aging from Alzheimer’s disease in structural magnetic resonance images. Neurobiol. Aging 36, S42–S52 (2015)CrossRefGoogle Scholar
  17. 17.
    Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003–024003 (2014)CrossRefGoogle Scholar
  18. 18.
    Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable M-reps for 3D medical image segmentations. Int. J. Comput. Vis. 55(2–3), 85–106 (2003)CrossRefGoogle Scholar
  19. 19.
    Rohrer, J.D., Nicholas, J.M., Cash, D.M., van Swieten, J., Dopper, E., Jiskoot, L., van Minkelen, R., Serge A Rombouts, M.J.C., Clegg, S., Espak, M., Mead, S., Thomas, D.L., Vita, E.D., et al.: Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 14(3), 253–262 (2015)CrossRefGoogle Scholar
  20. 20.
    Rothman, K.J.: No adjustments are needed for multiple comparisons. Epidemiology (Cambridge, Mass.) 1(1), 43–46 (1990)CrossRefGoogle Scholar
  21. 21.
    Routier, A., Gori, P., Fouquier, A.B.G., Lecomte, S., Colliot, O., Durrleman, S.: Evaluation of morphometric descriptors of deep brain structures for the automatic classification of patients with Alzheimer’s disease, mild cognitive impairment and elderly controls. In: MICCAI Workshop, Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, September 2014Google Scholar
  22. 22.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  23. 23.
    Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 1071, 242–250 (2006)Google Scholar
  24. 24.
    Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–221 (1998)CrossRefGoogle Scholar
  25. 25.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005). doi:10.1007/11505730_32 CrossRefGoogle Scholar
  26. 26.
    Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65, 113–134 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Claire Cury
    • 1
    • 2
  • Marco Lorenzi
    • 1
  • David Cash
    • 1
    • 2
  • Jennifer M. Nicholas
    • 2
    • 3
  • Alexandre Routier
    • 4
  • Jonathan Rohrer
    • 2
  • Sebastien Ourselin
    • 1
    • 2
  • Stanley Durrleman
    • 4
  • Marc Modat
    • 1
    • 2
  1. 1.Translational Imaging Group, Centre for Medical Image Computing, Medical Physics and Biomedical Engineering DepartmentUniversity College LondonLondonUK
  2. 2.Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUK
  3. 3.Department of Medical Statistics, London School of Hygiene & Tropical MedicineLondonUK
  4. 4.Inria Aramis project-team Centre Paris-Rocquencourt, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICMParisFrance

Personalised recommendations