Volume Representation of Parenchymatous Organs by Volumetric Self-organizing Deformable Model

  • Shoko Miyauchi
  • Ken’ichi Morooka
  • Tokuo Tsuji
  • Yasushi Miyagi
  • Takaichi Fukuda
  • Ryo Kurazume
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10126)

Abstract

This paper proposes a new method for describing parenchymatous organs by the set of volumetric primitives with simple shapes. The proposed method is based on our modified Self-organizing Deformable Model (mSDM) which maps an object surface model onto a target surface with no foldovers. By extending mSDM to apply to organ volume models, the proposed method, volumetric SDM (vSDM), finds the one-to-one correspondence between the volume model and its target volume. During the mapping, vSDM preserves geometrical properties of the original model while mapping internal structures of the model onto their corresponding primitives inside of the target volume. Owing to these characteristics, vSDM enables to obtain a new volume representation of organ volume models which simultaneously (1) represents by simple primitives the shapes of the whole organ and its internal structures and (2) describes the relationship among the external surface and internal structures of the organ.

References

  1. 1.
    Athanasiadis, T., Fudos, I., Nikou, C., Stamati, V.: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization. In: Proceedings of 2010 ACM Symposium on Applied Computing, pp. 1258–1265. ACM (2010)Google Scholar
  2. 2.
    Dehne, F.: Algorithms and Data Structures: Third Workshop, Montreal, Canada, 11–13 August 1993, WADS 1993. LNCS, vol. 709. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Hu, J., Zou, G.J., Hua, J.: Volume-preserving mapping and registration for collective data visualization. IEEE Trans. Vis. Comput. Graph. 20(12), 2664–2673 (2014)CrossRefGoogle Scholar
  4. 4.
    Lam, K.C., Gu, X., Lui, L.M.: Genus-one surface registration via Teichmüller extremal mapping. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 25–32. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10443-0_4 Google Scholar
  5. 5.
    Li, X., Xu, H., Wan, S., Yin, Z., Yu, W.: Feature-aligned harmonic volumetric mapping using MFS. Comput. Graph. 34(3), 242–251 (2010)CrossRefGoogle Scholar
  6. 6.
    Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: Area- and angle-preserving parameterization for vertebra surface mesh. In: Yao, J., Glocker, B., Klinder, T., Li, S. (eds.) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 20, pp. 187–198. Springer, Heidelberg (2015). doi:10.1007/978-3-319-14148-0_16 CrossRefGoogle Scholar
  7. 7.
    Miyauchi, S., Morooka, K., Miyagi, Y., Fukuda, T., Tsuji, T., Kurazume, R.: Tissue surface model mapping onto arbitrary target surface based on self-organizing deformable model. In: 2013 Fourth International Conference on Emerging Security Technologies (EST), pp. 79–82. IEEE (2013)Google Scholar
  8. 8.
    Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: Angle- and volume-preserving mapping based on modified self-organizing deformable model. In: 23rd International Conference on Pattern Recognition (2016)Google Scholar
  9. 9.
    Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: A method for mapping tissue volume model onto target volume using volumetric self-organizing deformable model. In: SPIE Medical Imaging, p. 97842Z. International Society for Optics and Photonics (2016)Google Scholar
  10. 10.
    Morooka, K., Nagahashi, H.: Self-organizing deformable model: a new method for fitting mesh model to given object surface. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 151–158. Springer, Heidelberg (2005). doi:10.1007/11595755_19 CrossRefGoogle Scholar
  11. 11.
    Sederberg, T.W., Parry, S.R.: Free-from deformation of solid geometric models. Proc. ACM SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)CrossRefGoogle Scholar
  12. 12.
    Shi, R., Zeng, W., Su, Z., Damasio, H., Lu, Z., Wang, Y., Yau, S.T., Gu, X.: Hyperbolic harmonic mapping for constrained brain surface registration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2531–2538 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Shoko Miyauchi
    • 1
  • Ken’ichi Morooka
    • 1
  • Tokuo Tsuji
    • 2
  • Yasushi Miyagi
    • 3
  • Takaichi Fukuda
    • 4
  • Ryo Kurazume
    • 1
  1. 1.Kyushu UniversityFukuokaJapan
  2. 2.Kanazawa UniversityIshikawaJapan
  3. 3.Fukuoka Mirai HospitalFukuokaJapan
  4. 4.Kumamoto UniversityKumamotoJapan

Personalised recommendations