Functional Maps for Brain Classification on Spectral Domain

  • Simone Melzi
  • Alessandro Mella
  • Letizia Squarcina
  • Marcella Bellani
  • Cinzia Perlini
  • Mirella Ruggeri
  • Carlo Alfredo Altamura
  • Paolo Brambilla
  • Umberto Castellani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10126)


In this paper we exploit the Functional maps approach for brain classification. The functional representation of brain shapes, or their subparts, enables us to improve the detection of morphological abnormalities associated with the analyzed disease. The proposed method is based on the spectral shape paradigm that is largely used for generic geometric processing but still few exploited in the medical context. The key aspect of the Functional maps framework is that it moves the estimation of correspondences from the shape space to the functional space enhancing the potential of spectral analysis. Moreover, we propose a new kernel, called the Functional maps kernel (FM-kernel) for the Support Vector Machine (SVM) classification that is specifically designed to work on the functional space. The obtained results for bipolar disorder detection on the putamen regions are promising in comparison with other spectral-based approaches.


Spectral shape analysis Functional maps Brain classification Diseases and disorders detection 


  1. 1.
    Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Computer Vision Workshops, IEEE International Conference on Computer Vision (ICCV), pp. 1626–1633 (2011)Google Scholar
  2. 2.
    Batmanghelich, K.N., Ye, D.H., Pohl, K.M., Taskar, B., Davatzikos, C.: Disease classification and prediction via semi-supervised dimensionality reduction. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1086–1090 (2011)Google Scholar
  3. 3.
    Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711 (2010)Google Scholar
  4. 4.
    Castellani, U., Rossato, E., Murino, V., Bellani, M., Rambaldelli, G., Perlini, C., Tomelleri, L., Tansella, M., Brambilla, P.: Classification of schizophrenia using feature-based morphometry. J. Neural Transm. 119, 395–404 (2012)CrossRefGoogle Scholar
  5. 5.
    Castellani, U., Mirtuono, P., Murino, V., Bellani, M., Rambaldelli, G., Tansella, M., Brambilla, P.: A new shape diffusion descriptor for brain classification. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 426–433. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23629-7_52 CrossRefGoogle Scholar
  6. 6.
    Castellani, U., Perina, A., Murino, V., Bellani, M., Rambaldelli, G., Tansella, M., Brambilla, P.: Brain morphometry by probabilistic latent semantic analysis. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 177–184. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15745-5_22 CrossRefGoogle Scholar
  7. 7.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27:1–27:27 (2011)Google Scholar
  8. 8.
    Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 283–298. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-16220-1_20 Google Scholar
  9. 9.
    Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)CrossRefGoogle Scholar
  10. 10.
    Gebal, K., Bærentzen, J.A., Anæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum (CGF) 28(5), 1405–1413 (2009)CrossRefGoogle Scholar
  11. 11.
    Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.: Shape analysis of brain ventricles using SPHARM. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 171–178. IEEE (2001)Google Scholar
  12. 12.
    Gerig, G., Styner, M., Shenton, M.E., Lieberman, J.A.: Shape versus size: improved understanding of the morphology of brain structures. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 24–32. Springer, Heidelberg (2001). doi: 10.1007/3-540-45468-3_4 CrossRefGoogle Scholar
  13. 13.
    Golland, P., Grimson, W.E.L., Kikinis, R.: Statistical shape analysis using fixed topology skeletons: corpus callosum study. In: Kuba, A., Šáamal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 382–387. Springer, Heidelberg (1999). doi: 10.1007/3-540-48714-X_33 CrossRefGoogle Scholar
  14. 14.
    Golland, P., Grimson, W.E.L., Shenton, M.E., Kikinis, R.: Detection and analysis of statistical differences in anatomical shape. Med. Image Anal. 9(1), 69–86 (2005)CrossRefGoogle Scholar
  15. 15.
    Gutman, B., Wang, Y., Morra, J., Toga, A.W., Thompson, P.M.: Disease classification with hippocampal shape invariants. Hippocampus 19(6), 572 (2009)CrossRefGoogle Scholar
  16. 16.
    Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28649-3_27 CrossRefGoogle Scholar
  17. 17.
    Hwang, J., Lyoo, I.K., Dager, S.R., Friedman, S.D., Oh, J.S., Lee, J.Y., Kim, S.J., Dunner, D.L., Renshaw, P.F.: Basal ganglia shape alterations in bipolar disorder. Am. J. Psychiatry 163(2), 276–285 (2006)CrossRefGoogle Scholar
  18. 18.
    Joshi, S.C., Miller, M.I., Grenander, U.: On the geometry and shape of brain sub-manifolds. Int. J. Pattern Recogn. Artif. Intell. 11(08), 1317–1343 (1997)CrossRefGoogle Scholar
  19. 19.
    Lombaert, H., Arcaro, M., Ayache, N.: Brain transfer: spectral analysis of cortical surfaces and functional maps. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 474–487. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19992-4_37 CrossRefGoogle Scholar
  20. 20.
    Maicas, G., Muñoz, A.I., Galiano, G., Hamza, A.B., Schiavi, E.: Spectral shape analysis of the hippocampal structure for Alzheimer’s disease diagnosis. In: Ortegón Gallego, F., Redondo Neble, M.V., Rodríguez Galván, J.R. (eds.) Trends in Differential Equations and Applications. SSSS, vol. 8, pp. 17–32. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-32013-7_2 CrossRefGoogle Scholar
  21. 21.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization & Mathematics III, pp. 35–57. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30:1–30:11 (2012)CrossRefGoogle Scholar
  23. 23.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rabiei, H., Richard, F., Roth, M., Anton, J.L., Coulon, O., Lefèvre, J.: The graph windowed Fourier transform: a tool to quantify the gyrification of the cerebral cortex. In: Workshop on Spectral Analysis in Medical Imaging (SAMI) (2015)Google Scholar
  25. 25.
    Reuter, M.: Laplace Spectra for Shape Recognition. Books on Demand, Norderstedt (2005)Google Scholar
  26. 26.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as Shape-DNA of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)CrossRefGoogle Scholar
  27. 27.
    Shuman, D.I., Ricaud, B., Vandergheynst, P.: A windowed graph Fourier transform. In: IEEE Statistical Signal Processing Workshop (SSP), pp. 133–136 (2012)Google Scholar
  28. 28.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum (CGF) 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  29. 29.
    Ulas, A., Duin, R.P.W., Castellani, U., Loog, M., Mirtuono, P., Bicego, M., Murino, V., Bellani, M., Cerruti, S., Tansella, M., Brambilla, P.: Dissimilarity-based detection of schizophrenia. Int. J. Imaging Syst. Technol. 21(2), 179–192 (2011)CrossRefGoogle Scholar
  30. 30.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar
  31. 31.
    Veronese, E., Castellani, U., Peruzzo, D., Bellani, M., Brambilla, P.: Machine learning approaches: from theory to application in schizophrenia. Comput. Math. Methods Med. 2013, 1–12 (2013)CrossRefGoogle Scholar
  32. 32.
    Wang, G., Wang, Y.: Multi-scale heat kernel based volumetric morphology signature. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 751–759. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_90 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Simone Melzi
    • 1
  • Alessandro Mella
    • 1
  • Letizia Squarcina
    • 2
  • Marcella Bellani
    • 3
  • Cinzia Perlini
    • 4
  • Mirella Ruggeri
    • 3
  • Carlo Alfredo Altamura
    • 5
  • Paolo Brambilla
    • 5
    • 6
  • Umberto Castellani
    • 1
  1. 1.Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Scientific Institute IRCCS E. MedeaBosisio PariniItaly
  3. 3.Section of PsychiatryAOUI VeronaVeronaItaly
  4. 4.Section of Clinical Psychology, Department of Neuroscience, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
  5. 5.Department of Neurosciences and Mental Health, Fondazione IRCCS Ca Granda Ospedale Maggiore PoliclinicoUniversity of MilanMilanItaly
  6. 6.Department of Psychiatry and Behavioural SciencesUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations