A Volumetric Conformal Mapping Approach for Clustering White Matter Fibers in the Brain

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10126)


The human brain may be considered as a genus-0 shape, topologically equivalent to a sphere. Various methods have been used in the past to transform the brain surface to that of a sphere using harmonic energy minimization methods used for cortical surface matching. However, very few methods have studied volumetric parameterization of the brain using a spherical embedding. Volumetric parameterization is typically used for complicated geometric problems like shape matching, morphing and isogeometric analysis. Using conformal mapping techniques, we can establish a bijective mapping between the brain and the topologically equivalent sphere. Our hypothesis is that shape analysis problems are simplified when the shape is defined in an intrinsic coordinate system. Our goal is to establish such a coordinate system for the brain. The efficacy of the method is demonstrated with a white matter clustering problem. Initial results show promise for future investigation in these parameterization technique and its application to other problems related to computational anatomy like registration and segmentation.


Conformal mapping Volumetric parameterization Spectral clustering White matter fiber clustering 


  1. 1.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N., Floater, M.S., Sabin, M. (eds.) Advances in Multiresolution for Geometric Modelling, vol. 1(1), pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Gupta, V., Voruganti, H.K., Dasgupta, B.: Domain mapping for volumetric parameterization using harmonic functions. Comput. Aided Des. Appl. 11(4), 426–435 (2014)Google Scholar
  3. 3.
    Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.-T.: Brain surface conformal parameterization with algebraic functions. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 946–954. Springer, Heidelberg (2006). doi:10.1007/11866763_116 CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Shi, J., Yin, X., Gu, X., Chan, T.F., Yau, S.-T., Toga, A.W., Thompson, P.M.: Brain surface conformal parameterization with the Ricci flow. IEEE Trans. Med. Imaging 31(2), 251–264 (2012)CrossRefGoogle Scholar
  6. 6.
    Mémoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. J. Comput. Phys. 195(1), 263–292 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gutman, B.A., Madsen, S.K., Toga, A.W., Thompson, P.M.: A family of fast spherical registration algorithms for cortical shapes. In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, D., Westin, C.-F. (eds.) MBIA 2013. LNCS, vol. 8159, pp. 246–257. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02126-3_24 CrossRefGoogle Scholar
  8. 8.
    Shi, Y., Lai, R., Toga, A.W.: Conformal mapping via metric optimization with application for cortical label fusion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 244–255. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38868-2_21 CrossRefGoogle Scholar
  9. 9.
    Lombaert, H., Arcaro, M., Ayache, N.: Brain transfer: spectral analysis of cortical surfaces and functional maps. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 474–487. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19992-4_37 CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Gu, X., Chan, T.F., Thompson, P.M., Yau, S.T.: Volumetric harmonic brain mapping. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 1275–1278. IEEE (2004)Google Scholar
  11. 11.
    O’Donnell, L., Kubicki, M., Shenton, M.E., Dreusicke, M.H., Grimson, W.E.L., Westin, C.F.: A method for clustering white matter fiber tracts. Am. J. Neuroradiol. 27(5), 1032–1036 (2006)Google Scholar
  12. 12.
    Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro. pp. 344–347. IEEE (2004)Google Scholar
  13. 13.
    Liu, M., Vemuri, B.C., Deriche, R.: Unsupervised automatic white matter fiber clustering using a Gaussian mixture model. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 522–525. IEEE (2012)Google Scholar
  14. 14.
    Guevara, P., Poupon, C., Rivière, D., Cointepas, Y., Descoteaux, M., Thirion, B., Mangin, J.F.: Robust clustering of massive tractography datasets. NeuroImage 54(3), 1975–1993 (2011)CrossRefGoogle Scholar
  15. 15.
    Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G., Alexander, D.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, vol. 2759 (2006)Google Scholar
  16. 16.
    Parker, G.J.M., Alexander, D.C.: Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 684–695. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45087-0_57 CrossRefGoogle Scholar
  17. 17.
    Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Zhang, J., Hsu, J.T., Miller, M.I., van Zijl, P.C., Albert, M., Lyketsos, C.G., Woods, R., Toga, A.W., Pike, G.B., Rosa-Neto, P., Evans, A., Mazziotta, J., Mori, S.: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. NeuroImage 46(2), 486–499 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Zhang, J., Oishi, K., Faria, A.V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A., et al.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage 52(4), 1289–1301 (2010)CrossRefGoogle Scholar
  19. 19.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  20. 20.
    O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007)CrossRefGoogle Scholar
  21. 21.
    Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100, 75–90 (2014)CrossRefGoogle Scholar
  22. 22.
    Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spectral methods for clustering. Pattern Recogn. 41(1), 176–190 (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Imaging Genetics CenterUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Google Inc.Los AngelesUSA

Personalised recommendations