Emerging Roles of Endothelial Cells in Multiple Sclerosis Pathophysiology and Therapy

  • J. Winny Yun
  • Alireza Minagar
  • J. Steven Alexander
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Multiple sclerosis (MS) is increasingly being viewed and studied not only as an immune-mediated demyelinating and neurodegenerative disease of the human central nervous system (CNS) but as a vascular-based form of neuroinflammation. Irrespective of the MS type (relapsing-remitting (RRMS, 85%), secondary progressive (SPMS, 12%), primary progressive (PPMS, 3%), or progressive-relapsing (PRMS, <1%)), the complex pathogenesis of MS can only be appreciated when and if vascular contributions are recognized as a significant part of MS etiology. Indeed, many novel therapies for MS target the mechanistically relevant vascular inflammatory features of these conditions and implicate cerebrovascular endothelial cells (CECs) as the “failing gatekeeper” of the blood-brain barrier (BBB). CEC and their metabolically and biochemically coupled cells (astrocytes, glia and neurons) establish and regulate several types of intercellular junctions which isolate the circulation from the brain as the functional neuro- and gliovascular units of the BBB. In health, the BBB generally isolates the brain parenchyma from immune cells and blood-borne neurotransmitters (glutamate, norepinephrine, serotonin) controlling solute exchange into and out of the CNS by a system of pumps, channels, and pores, requiring a continuous and significant energy expenditure.

Binding interactions between leukocytes and activated CEC (like non-BBB endothelial cells) can initiate and regulate trans-BBB immune cell penetration of the CNS during routine immune reconnaissance. The inappropriate intensification of these responses appears to be central to MS pathogenesis (and contributes to other neuroinflammatory diseases, acute demyelinating encephalomyelitis [ADEM], optic neuritis/Devic’s disease). Extravasation of activated and committed leukocytes across the CEC into the protected environment of the brain is the first step in generating MS lesions. All forms of MS show propagation of immune cascades culminating in the white matter demyelination and expansion of “scar” tissue (hence the term sclerosis). These regions of tissue destruction are revealed diagnostically by magnetic resonance imaging (MRI) of the brain and spinal cord as T1 and T2 hypointensities reflecting demyelination and gray matter injury, respectively.

Basic scientific and clinical studies now support contributions of vascular and endothelial cell stress and apoptosis as significant features of MS and help explain how blockade of leukocyte binding and transendothelial extravasation of activated immune cells across the MS-inflamed cerebral microvasculature and restitution of endothelial barrier function represent important goals of MS treatment. Such approaches can achieve significant reductions in MS disease activity and progression, but carry risks from interference with immune surveillance. Endothelial stress in the forms of endothelial cell-derived microparticles (EMPs) is also becoming increasingly recognized, with EMPs acting as both markers and mediators of MS pathology. In this chapter, we review recent findings and advances regarding leukocyte-endothelial interactions at the BBB and how the BBB can be manipulated to treat MS.

Keywords

Blood-brain barrier Cytokine Endothelium MRI Multiple sclerosis 

References

  1. 1.
    Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, et al. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol. 2015;45(4):1043–58. Epub 2014/12/30. doi:10.1002/eji.201445125. PubMed PMID: 25545837.
  2. 2.
    Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B. T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood. 2003;102(10):3675–83. Epub 2003/08/02. doi:10.1182/blood-2003-02-0358. PubMed PMID: 12893765.
  3. 3.
    Gorina R, Lyck R, Vestweber D, Engelhardt B. beta2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. J Immunol (Baltimore, Md : 1950). 2014;192(1):324–37. Epub 2013/11/22. doi:10.4049/jimmunol.1300858. PubMed PMID: 24259506.
  4. 4.
    von Wedel-Parlow M, Schrot S, Lemmen J, Treeratanapiboon L, Wegener J, Galla HJ. Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Res. 2011;1367:62–76. Epub 2010/09/30. doi:10.1016/j.brainres.2010.09.076. PubMed PMID: 20875807.
  5. 5.
    Oshima T, Blaschuk O, Gour B, Symonds M, Elrod JW, Sasaki M, et al. Tight junction peptide antagonists enhance neutrophil trans-endothelial chemotaxis. Life Sci. 2003;73(13):1729–40. Epub 2003/07/24. PubMed PMID: 12875904.Google Scholar
  6. 6.
    Gotsch U, Borges E, Bosse R, Boggemeyer E, Simon M, Mossmann H, et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci. 1997;110(Pt 5):583–8. Epub 1997/03/01. PubMed PMID: 9092940.PubMedGoogle Scholar
  7. 7.
    Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011;8(1):3. Epub 2011/02/26. doi:10.1186/2045-8118-8-3. PubMed PMID: 21349151; PubMed Central PMCID: PMCPMC3045361.
  8. 8.
    Engelhardt B. Neuroscience. Blood-brain barrier differentiation. Science. 2011;334(6063):1652–3. Epub 2011/12/24. doi:10.1126/science.1216853. PubMed PMID: 22194564.
  9. 9.
    Fulmer CG, VonDran MW, Stillman AA, Huang Y, Hempstead BL, Dreyfus CF. Astrocyte-derived BDNF supports myelin protein synthesis after cuprizone-induced demyelination. J Neurosci Off J Soc Neurosci. 2014;34(24):8186–96. Epub 2014/06/13. doi:10.1523/jneurosci.4267-13.2014. PubMed PMID: 24920623; PubMed Central PMCID: PMCPMC4051974.
  10. 10.
    Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629–38. Epub 2002/08/07. PubMed PMID: 12162730; PubMed Central PMCID: PMCPMC1570746.Google Scholar
  11. 11.
    Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res. 2005;1038(2):208–15. Epub 2005/03/11. doi:10.1016/j.brainres.2005.01.027. PubMed PMID: 15757636.
  12. 12.
    Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, et al. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res. 2012;37(2):401–9. Epub 2011/10/18. doi:10.1007/s11064-011-0626-8. PubMed PMID: 22002662.
  13. 13.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61. Epub 2010/10/15. doi:10.1038/nature09522. PubMed PMID: 20944627.
  14. 14.
    Bai Y, Zhu X, Chao J, Zhang Y, Qian C, Li P, et al. Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PloS One. 2015;10(4):e0124362. Epub 2015/04/18. doi:10.1371/journal.pone.0124362. PubMed PMID: 25884837; PubMed Central PMCID: PMCPMC4401453.
  15. 15.
    Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122(7):2454–68. Epub 2012/06/02. doi:10.1172/jci60842. PubMed PMID: 22653056; PubMed Central PMCID: PMCPMC3386814.
  16. 16.
    Hudson N, Powner MB, Sarker MH, Burgoyne T, Campbell M, Ockrim ZK, et al. Differential apicobasal VEGF signaling at vascular blood-neural barriers. Dev Cell. 2014;30(5):541–52. Epub 2014/09/02. doi:10.1016/j.devcel.2014.06.027. PubMed PMID: 25175707; PubMed Central PMCID: PMCPMC4160345.
  17. 17.
    Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H. Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 2009;118(2):219–33. Epub 2009/06/18. doi:10.1007/s00401-009-0558-4. PubMed PMID: 19533155.
  18. 18.
    Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science. 2011;334(6063):1727–31. Epub 2011/12/07. doi:10.1126/science.1206936. PubMed PMID: 22144466.
  19. 19.
    Breier G, Breviario F, Caveda L, Berthier R, Schnurch H, Gotsch U, et al. Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood. 1996;87(2):630–41. Epub 1996/01/15. PubMed PMID: 8555485.PubMedGoogle Scholar
  20. 20.
    Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A. 1999;96(17):9815–20. Epub 1999/08/18. PubMed PMID: 10449777; PubMed Central PMCID: PMCPMC22293.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dejana E, Zanetti A, Del Maschio A. Adhesive proteins at endothelial cell-to-cell junctions and leukocyte extravasation. Haemostasis. 1996;26(Suppl 4):210–9. Epub 1996/10/01. PubMed PMID: 8979126.PubMedGoogle Scholar
  22. 22.
    Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem. 1998;273(24):15099–103. Epub 1998/06/17. PubMed PMID: 9614120.CrossRefPubMedGoogle Scholar
  23. 23.
    Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355(3):607–19. Epub 2014/01/18. doi:10.1007/s00441-013-1779-3. PubMed PMID: 24435645; PubMed Central PMCID: PMCPMC3975704.
  24. 24.
    Graesser D, Solowiej A, Bruckner M, Osterweil E, Juedes A, Davis S, et al. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J Clin Invest. 2002;109(3):383–92. Epub 2002/02/06. doi:10.1172/jci13595. PubMed PMID: 11827998; PubMed Central PMCID: PMCPMC150854.
  25. 25.
    Williams SG, Connelly DT, Jackson M, Bennett A, Albouaini K, Todd DM. Does treatment with ACE inhibitors or angiotensin II receptor antagonists prevent atrial fibrillation after dual chamber pacemaker implantation? Europace. 2005;7(6):554–9. doi:10.1016/j.eupc.2005.06.003. PubMed PMID: WOS:000233324000008.CrossRefPubMedGoogle Scholar
  26. 26.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88. Epub 1993/12/01. PubMed PMID: 8276896; PubMed Central PMCID: PMCPMC2290891.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood-brain barrier. Acta Neurobiol Exp. 2011;71(1):113–28. Epub 2011/04/19. PubMed PMID: 21499332.Google Scholar
  28. 28.
    Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, et al. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 2003;105(6):586–92. Epub 2003/05/08. doi:10.1007/s00401-003-0688-z. PubMed PMID: 12734665.
  29. 29.
    Schrade A, Sade H, Couraud PO, Romero IA, Weksler BB, Niewoehner J. Expression and localization of claudins-3 and -12 in transformed human brain endothelium. Fluids Barriers CNS. 2012;9:6. Epub 2012/03/01. doi:10.1186/2045-8118-9-6. PubMed PMID: 22373538; PubMed Central PMCID: PMCPMC3305566.
  30. 30.
    Blaschuk OW, Oshima T, Gour BJ, Symonds JM, Park JH, Kevil CG, et al. Identification of an occludin cell adhesion recognition sequence. Inflammation. 2002;26(4):193–8. Epub 2002/08/20. PubMed PMID: 12184633.CrossRefPubMedGoogle Scholar
  31. 31.
    Alexander JS, Dayton T, Davis C, Hill S, Jackson TH, Blaschuk O, et al. Activated T-lymphocytes express occludin, a component of tight junctions. Inflammation. 1998;22(6):573–82. Epub 1998/11/24. PubMed PMID: 9824772.CrossRefPubMedGoogle Scholar
  32. 32.
    Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81(1):1–44. Epub 2002/12/12. PubMed PMID: 12475568.CrossRefPubMedGoogle Scholar
  33. 33.
    Alexander JS, Alexander BC, Eppihimer LA, Goodyear N, Haque R, Davis CP, et al. Inflammatory mediators induce sequestration of VE-cadherin in cultured human endothelial cells. Inflammation. 2000;24(2):99–113. Epub 2000/03/16. PubMed PMID: 10718113.CrossRefPubMedGoogle Scholar
  34. 34.
    Kevil CG, Okayama N, Trocha SD, Kalogeris TJ, Coe LL, Specian RD, et al. Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation (New York, NY : 1994). 1998;5(2–3):197–210. Epub 1998/10/28. PubMed PMID: 9789260.CrossRefGoogle Scholar
  35. 35.
    Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS. H(2)O(2)-mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol. 2000;279(1):C21–30. Epub 2000/07/18. PubMed PMID: 10898713.PubMedGoogle Scholar
  36. 36.
    Kevil CG, Oshima T, Alexander JS. The role of p38 MAP kinase in hydrogen peroxide mediated endothelial solute permeability. Endothelium J Endothelial Cell Res. 2001;8(2):107–16. Epub 2001/09/27. PubMed PMID: 11572474.CrossRefGoogle Scholar
  37. 37.
    Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol. 2002;3(2):151–8. Epub 2002/01/29. doi:10.1038/ni755. PubMed PMID: 11812992.
  38. 38.
    O'Driscoll MC, Daly SB, Urquhart JE, Black GC, Pilz DT, Brockmann K, et al. Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet. 2010;87(3):354–64. Epub 2010/08/24. doi:10.1016/j.ajhg.2010.07.012. PubMed PMID: 20727516; PubMed Central PMCID: PMCPMC2933344.
  39. 39.
    Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208(6):703–11. Epub 2015/03/11. doi:10.1083/jcb.201410131. PubMed PMID: 25753034; PubMed Central PMCID: PMCPMC4362448.
  40. 40.
    McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K, et al. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol. 2002;22(21):7667–77. Epub 2002/10/09. PubMed PMID: 12370313; PubMed Central PMCID: PMCPMC135679.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kaneko Y, Tachikawa M, Akaogi R, Fujimoto K, Ishibashi M, Uchida Y, et al. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J Pharmacol Exp Ther. 2015;353(1):192–200. Epub 2015/02/12. doi:10.1124/jpet.114.220210. PubMed PMID: 25670633.
  42. 42.
    Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2003;9(6):540–9. Epub 2003/12/11. PubMed PMID: 14664465.Google Scholar
  43. 43.
    Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol. 2003;201(2):319–27. Epub 2003/10/01. doi:10.1002/path.1434. PubMed PMID: 14517850.
  44. 44.
    Pfeiffer F, Schafer J, Lyck R, Makrides V, Brunner S, Schaeren-Wiemers N, et al. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol. 2011;122(5):601–14. Epub 2011/10/11. doi:10.1007/s00401-011-0883-2. PubMed PMID: 21983942; PubMed Central PMCID: PMCPMC3207130.
  45. 45.
    Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, et al. Interferon (IFN)-beta 1a and IFN-beta 1b block IFN-gamma-induced disintegration of endothelial junction integrity and barrier. Endothelium J Endothelial Cell Res. 2003;10(6):299–307. Epub 2004/01/27. PubMed PMID: 14741845.Google Scholar
  46. 46.
    Shimizu F, Tasaki A, Sano Y, Ju M, Nishihara H, Oishi M, et al. Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier. PloS One. 2014;9(3):e92872. Epub 2014/04/02. doi:10.1371/journal.pone.0092872. PubMed PMID: 24686948; PubMed Central PMCID: PMCPMC3970956.
  47. 47.
    Kevil CG, Ohno N, Gute DC, Okayama N, Robinson SA, Chaney E, et al. Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radic Biol Med. 1998;24(6):1015–22. Epub 1998/06/02. PubMed PMID: 9607613.CrossRefPubMedGoogle Scholar
  48. 48.
    Alexander JS, Jackson SA, Chaney E, Kevil CG, Haselton FR. The role of cadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actin-cadherin interactions. Inflammation. 1998;22(4):419–33. Epub 1998/07/24. PubMed PMID: 9675612.CrossRefPubMedGoogle Scholar
  49. 49.
    Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J Off Publ Fed Am Soc Exp Biol. 2005;19(8):923–33. Epub 2005/06/01. doi:10.1096/fj.04-3260com. PubMed PMID: 15923402.
  50. 50.
    Chaitanya GV, Cromer WE, Wells SR, Jennings MH, Couraud PO, Romero IA, et al. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro. J Neuroinflammation. 2011;8:162. Epub 2011/11/25. doi:10.1186/1742-2094-8-162. PubMed PMID: 22112345; PubMed Central PMCID: PMCPMC3248576.
  51. 51.
    Beeman NE, Baumgartner HK, Webb PG, Schaack JB, Neville MC. Disruption of occludin function in polarized epithelial cells activates the extrinsic pathway of apoptosis leading to cell extrusion without loss of transepithelial resistance. BMC Cell Biol. 2009;10:85. Epub 2009/12/17. doi:10.1186/1471-2121-10-85. PubMed PMID: 20003227; PubMed Central PMCID: PMCPMC2796999.
  52. 52.
    Beeman N, Webb PG, Baumgartner HK. Occludin is required for apoptosis when claudin-claudin interactions are disrupted. Cell Death Dis. 2012;3:e273. Epub 2012/03/01. doi:10.1038/cddis.2012.14. PubMed PMID: 22361748; PubMed Central PMCID: PMCPMC3288343.
  53. 53.
    Haghjooy Javanmard S, Saadatnia MM, Homayouni VV, Nikoogoftar MM, Maghzi AH, Etemadifar M, et al. Interferon-beta-1b protects against multiple sclerosis-induced endothelial cells apoptosis. Front Biosci (Elite edition). 2012;4:1368–74. Epub 2011/12/29. PubMed PMID: 22201961.Google Scholar
  54. 54.
    Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003;206(2):187–91. Epub 2003/02/01. PubMed PMID: 12559509.CrossRefPubMedGoogle Scholar
  55. 55.
    Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, Alexander JS, et al. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res. 2009;31(8):799–806. Epub 2009/09/03. doi:10.1179/016164109x12445505689526. PubMed PMID: 19723448.
  56. 56.
    Gonsette RE. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler (Houndmills, Basingstoke, England). 2008;14(1):22–34. Epub 2007/09/21. doi:10.1177/1352458507080111. PubMed PMID: 17881394.
  57. 57.
    Sharp CD, Hines I, Houghton J, Warren A, Jackson THt, Jawahar A, et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8. Epub 2003/08/02. doi:10.1152/ajpheart.00520.2003. PubMed PMID: 12893641.
  58. 58.
    Sharp CD, Houghton J, Elrod JW, Warren A, Jackson THt, Jawahar A, et al. N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidant stress. Am J Physiol Heart Circ Physiol. 2005;288(4):H1893–9. Epub 2004/12/04. doi:10.1152/ajpheart.01110.2003. PubMed PMID: 15576430.
  59. 59.
    Tilleux S, Hermans E. Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res. 2007;85(10):2059–70. Epub 2007/05/15. doi:10.1002/jnr.21325. PubMed PMID: 17497670.
  60. 60.
    Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2006;26(7):959–73. Epub 2005/11/25. doi:10.1038/sj.jcbfm.9600249. PubMed PMID: 16306934.
  61. 61.
    Regina A, Morchoisne S, Borson ND, McCall AL, Drewes LR, Roux F. Factor(s) released by glucose-deprived astrocytes enhance glucose transporter expression and activity in rat brain endothelial cells. Biochim Biophys Acta. 2001;1540(3):233–42. Epub 2001/10/05. PubMed PMID: 11583818.CrossRefPubMedGoogle Scholar
  62. 62.
    Dore-Duffy P, Balabanov R, Beaumont T, Katar M. The CNS pericyte response to low oxygen: early synthesis of cyclopentenone prostaglandins of the J-series. Microvasc Res. 2005;69(1–2):79–88. Epub 2005/03/31. doi:10.1016/j.mvr.2004.11.004. PubMed PMID: 15797264.
  63. 63.
    Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol Aging. 1997;18(5):469–74. Epub 1997/12/09. PubMed PMID: 9390772.CrossRefPubMedGoogle Scholar
  64. 64.
    Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM. Glut1/SLC2A1 is crucial for the development of the blood-brain barrier in vivo. Ann Neurol. 2010;68(6):835–44. Epub 2011/01/05. doi:10.1002/ana.22318. PubMed PMID: 21194153.
  65. 65.
    Abid Hussein MN, Boing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost. 2007;98(5):1096–107. Epub 2007/11/15. PubMed PMID: 18000616.PubMedGoogle Scholar
  66. 66.
    Lowery-Nordberg M, Eaton E, Gonzalez-Toledo E, Harris MK, Chalamidas K, McGee-Brown J, et al. The effects of high dose interferon-beta1a on plasma microparticles: correlation with MRI parameters. J Neuroinflammation. 2011;8:43. Epub 2011/05/11. doi:10.1186/1742-2094-8-43. PubMed PMID: 21554694; PubMed Central PMCID: PMCPMC3120694.
  67. 67.
    Marcos-Ramiro B, Oliva Nacarino P, Serrano-Pertierra E, Blanco-Gelaz MA, Weksler BB, Romero IA, et al. Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neurosci. 2014;15:110. Epub 2014/09/23. doi:10.1186/1471-2202-15-110. PubMed PMID: 25242463; PubMed Central PMCID: PMCPMC4261570.
  68. 68.
    Alexander JS, Chervenak R, Weinstock-Guttman B, Tsunoda I, Ramanathan M, Martinez N, et al. Blood circulating microparticle species in relapsing-remitting and secondary progressive multiple sclerosis. A case-control, cross sectional study with conventional MRI and advanced iron content imaging outcomes. J Neurol Sci. 2015;355(1–2):84–9. Epub 2015/06/16. doi:10.1016/j.jns.2015.05.027. PubMed PMID: 26073484; PubMed Central PMCID: PMCPMC4550483.
  69. 69.
    Sheremata WA, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008;5:27. Epub 2008/07/01. doi:10.1186/1742-2094-5-27. PubMed PMID: 18588683; PubMed Central PMCID: PMCPMC2474601.
  70. 70.
    Jimenez J, Jy W, Mauro LM, Horstman LL, Ahn ER, Ahn YS, et al. Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-beta 1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes. Mult Scler (Houndmills, Basingstoke, England). 2005;11(3):310–5. Epub 2005/06/17. PubMed PMID: 15957513.CrossRefGoogle Scholar
  71. 71.
    Minagar A, Alexander JS, Schwendimann RN, Kelley RE, Gonzalez-Toledo E, Jimenez JJ, et al. Combination therapy with interferon beta-1a and doxycycline in multiple sclerosis: an open-label trial. Arch Neurol. 2008;65(2):199–204. Epub 2007/12/12. doi:10.1001/archneurol.2007.41. PubMed PMID: 18071030.
  72. 72.
    Alexander JS, Harris MK, Wells SR, Mills G, Chalamidas K, Ganta VC, et al. Alterations in serum MMP-8, MMP-9, IL-12p40 and IL-23 in multiple sclerosis patients treated with interferon-beta1b. Mult Scler (Houndmills, Basingstoke, England). 2010;16(7):801–9. Epub 2010/07/14. doi:10.1177/1352458510370791. PubMed PMID: 20621951.
  73. 73.
    Benesova Y, Vasku A, Stourac P, Hladikova M, Beranek M, Kadanka Z, et al. Matrix metalloproteinase-9 and matrix metalloproteinase-2 gene polymorphisms in multiple sclerosis. J Neuroimmunol. 2008;205(1–2):105–9. Epub 2008/10/07. doi:10.1016/j.jneuroim.2008.08.007. PubMed PMID: 18835646.
  74. 74.
    Liu L, Belkadi A, Darnall L, Hu T, Drescher C, Cotleur AC, et al. CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci. 2010;13(3):319–26. Epub 2010/02/16. doi:10.1038/nn.2491. PubMed PMID: 20154684; PubMed Central PMCID: PMCPMC2827651.
  75. 75.
    Hasty KA, Pourmotabbed TF, Goldberg GI, Thompson JP, Spinella DG, Stevens RM, et al. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J Biol Chem. 1990;265(20):11421–4. Epub 1990/07/15. PubMed PMID: 2164002.PubMedGoogle Scholar
  76. 76.
    Miranda-Hernandez S, Baxter AG. Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol. 2013;2(1):75–93. Epub 2013/07/26. PubMed PMID: 23885326; PubMed Central PMCID: PMCPMC3714200.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol. 2012;242(1–2):60–71. Epub 2011/12/16. doi:10.1016/j.jneuroim.2011.11.009. PubMed PMID: 22169406.
  78. 78.
    Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci. 1999;112(Pt 23):4347–56. Epub 1999/11/24. PubMed PMID: 10564652.PubMedGoogle Scholar
  79. 79.
    Alexander JS, Elrod JW. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat. 2002;200(6):561–74. Epub 2002/08/07. PubMed PMID: 12162724; PubMed Central PMCID: PMCPMC1570742.Google Scholar
  80. 80.
    Konnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104. Epub 2013/09/12. doi:10.1155/2013/914104. PubMed PMID: 24023566; PubMed Central PMCID: PMCPMC3759277.
  81. 81.
    Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30(4):837–48. Epub 2009/12/10. doi:10.1038/jcbfm.2009.248. PubMed PMID: 19997118; PubMed Central PMCID: PMCPMC2949161.
  82. 82.
    Nelissen I, Martens E, Van den Steen PE, Proost P, Ronsse I, Opdenakker G. Gelatinase B/matrix metalloproteinase-9 cleaves interferon-beta and is a target for immunotherapy. Brain. 2003;126(Pt 6):1371–81. Epub 2003/05/24. PubMed PMID: 12764058.CrossRefPubMedGoogle Scholar
  83. 83.
    Comini-Frota ER, Rodrigues DH, Miranda EC, Brum DG, Kaimen-Maciel DR, Donadi EA, et al. Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al.]. 2012;45(1):68–71. Epub 2011/12/21. PubMed PMID: 22183248; PubMed Central PMCID: PMCPMC3854145.Google Scholar
  84. 84.
    Stuve O, Chabot S, Jung SS, Williams G, Yong VW. Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-1b through an effect on matrix metalloproteinase-9. J Neuroimmunol. 1997;80(1–2):38–46. Epub 1997/12/31. PubMed PMID: 9413258.CrossRefPubMedGoogle Scholar
  85. 85.
    Opdenakker G, Van Damme J. Probing cytokines, chemokines and matrix metalloproteinases towards better immunotherapies of multiple sclerosis. Cytokine Growth Factor Rev. 2011;22(5–6):359–65. Epub 2011/11/29. doi:10.1016/j.cytogfr.2011.11.005. PubMed PMID: 22119009.
  86. 86.
    Agrawal SM, Silva C, Tourtellotte WW, Yong VW. EMMPRIN: a novel regulator of leukocyte transmigration into the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Off J Soc Neurosci. 2011;31(2):669–77. Epub 2011/01/14. doi:10.1523/jneurosci.3659-10.2011. PubMed PMID: 21228176.
  87. 87.
    Festa ED, Hankiewicz K, Kim S, Skurnick J, Wolansky LJ, Cook SD, et al. Serum levels of CXCL13 are elevated in active multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2009;15(11):1271–9. Epub 2009/10/07. doi:10.1177/1352458509107017. PubMed PMID: 19805441.
  88. 88.
    Weiss N, Deboux C, Chaverot N, Miller F, Baron-Van Evercooren A, Couraud PO, et al. IL8 and CXCL13 are potent chemokines for the recruitment of human neural precursor cells across brain endothelial cells. J Neuroimmunol. 2010;223(1–2):131–4. Epub 2010/04/20. doi:10.1016/j.jneuroim.2010.03.009. PubMed PMID: 20400187.
  89. 89.
    Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, et al. Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol. 2011;136(5):696–704. Epub 2011/10/28. doi:10.1309/ajcp7ubk8ibvmvnr. PubMed PMID: 22031307.
  90. 90.
    Alatab S, Maghbooli Z, Hossein-Nezhad A, Khosrofar M, Mokhtari F. Cytokine profile, Foxp3 and nuclear factor-kB ligand levels in multiple sclerosis subtypes. Minerva Med. 2011;102(6):461–8. Epub 2011/12/24. PubMed PMID: 22193377.PubMedGoogle Scholar
  91. 91.
    Beard RS, Jr., Haines RJ, Wu KY, Reynolds JJ, Davis SM, Elliott JE, et al. Non-muscle Mlck is required for beta-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1beta-mediated barrier dysfunction in brain endothelial cells. J Cell Sci. 2014;127(Pt 8):1840–53. Epub 2014/02/14. doi:10.1242/jcs.144550. PubMed PMID: 24522189; PubMed Central PMCID: PMCPMC4074294.
  92. 92.
    Ryan C, Thrash B, Warren RB, Menter A. The use of ustekinumab in autoimmune disease. Expert Opin Biol Ther. 2010;10(4):587–604. Epub 2010/03/12. doi:10.1517/14712591003724670. PubMed PMID: 20218921.
  93. 93.
    Sorensen EW, Gerber SA, Frelinger JG, Lord EM. IL-12 suppresses vascular endothelial growth factor receptor 3 expression on tumor vessels by two distinct IFN-gamma-dependent mechanisms. J Immunol (Baltimore, Md : 1950). 2010;184(4):1858–66. Epub 2010/01/12. doi:10.4049/jimmunol.0903210. PubMed PMID: 20061409; PubMed Central PMCID: PMCPMC3070472.
  94. 94.
    Mishra M, Kumar H, Bajpai S, Singh RK, Tripathi K. Level of serum IL-12 and its correlation with endothelial dysfunction, insulin resistance, proinflammatory cytokines and lipid profile in newly diagnosed type 2 diabetes. Diabetes Res Clin Pract. 2011;94(2):255–61. Epub 2011/08/23. doi:10.1016/j.diabres.2011.07.037. PubMed PMID: 21855158.
  95. 95.
    Jones JL, Coles AJ. New treatment strategies in multiple sclerosis. Exp Neurol. 2010;225(1):34–9. Epub 2010/06/16. doi:10.1016/j.expneurol.2010.06.003. PubMed PMID: 20547155.
  96. 96.
    Neuhaus O, Strasser-Fuchs S, Fazekas F, Kieseier BC, Niederwieser G, Hartung HP, et al. Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology. 2002;59(7):990–7. Epub 2002/10/09. PubMed PMID: 12370451.CrossRefPubMedGoogle Scholar
  97. 97.
    Wang J, Xiao Y, Luo M, Zhang X, Luo H. Statins for multiple sclerosis. Cochrane Database Systematic Reviews. 2010;(12):Cd008386. Epub 2010/12/15. doi:10.1002/14651858.CD008386.pub2. PubMed PMID: 21154395.
  98. 98.
    Pihl-Jensen G, Tsakiri A, Frederiksen JL. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs. 2015;29(4):277–91. Epub 2015/03/22. doi:10.1007/s40263-015-0239-x. PubMed PMID: 25795002.
  99. 99.
    Weinstock-Guttman B, Zivadinov R, Mahfooz N, Carl E, Drake A, Schneider J, et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation. 2011;8:127. Epub 2011/10/06. doi:10.1186/1742-2094-8-127. PubMed PMID: 21970791; PubMed Central PMCID: PMCPMC3228782.
  100. 100.
    Sasaki M, Bharwani S, Jordan P, Elrod JW, Grisham MB, Jackson TH, et al. Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radic Biol Med. 2003;35(12):1679–87. Epub 2003/12/19. PubMed PMID: 14680690.CrossRefPubMedGoogle Scholar
  101. 101.
    Sasaki M, Bharwani S, Jordan P, Joh T, Manas K, Warren A, et al. The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor pravastatin reduces disease activity and inflammation in dextran-sulfate induced colitis. J Pharmacol Exp Ther. 2003;305(1):78–85. Epub 2003/03/22. doi:10.1124/jpet.102.044099. PubMed PMID: 12649355.
  102. 102.
    Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF, Tanus-Santos JE. Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2011;383(6):547–54. Epub 2011/03/31. doi:10.1007/s00210-011-0623-0. PubMed PMID: 21448567.
  103. 103.
    Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2009;297(3):L520–9. Epub 2009/07/04. doi:10.1152/ajplung.00076.2009. PubMed PMID: 19574423; PubMed Central PMCID: PMCPMC2739770.
  104. 104.
    Ghosh BC, Shatzkes J, Webb H. Primary epiploic appendagitis: diagnosis, management, and natural course of the disease. Mil Med. 2003;168(4):346–7. Epub 2003/05/08. PubMed PMID: 12733684.PubMedGoogle Scholar
  105. 105.
    Hellwig K, Gold R. Progressive multifocal leukoencephalopathy and natalizumab. J Neurol. 2011;258(11):1920–8. Epub 2011/06/08. doi:10.1007/s00415-011-6116-8. PubMed PMID: 21647730.
  106. 106.
    Streeter PR, Berg EL, Rouse BT, Bargatze RF, Butcher EC. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature. 1988;331(6151):41–6. Epub 1988/01/07. doi:10.1038/331041a0. PubMed PMID: 3340147.
  107. 107.
    Yang Y, Cardarelli PM, Lehnert K, Rowland S, Krissansen GW. LPAM-1 (integrin alpha 4 beta 7)-ligand binding: overlapping binding sites recognizing VCAM-1, MAdCAM-1 and CS-1 are blocked by fibrinogen, a fibronectin-like polymer and RGD-like cyclic peptides. Eur J Immunol. 1998;28(3):995–1004. Epub 1998/04/29. PubMed PMID: 9541595.CrossRefPubMedGoogle Scholar
  108. 108.
    Berger JR, Khalili K. The pathogenesis of progressive multifocal leukoencephalopathy. Discov Med. 2011;12(67):495–503. Epub 2011/12/30. PubMed PMID: 22204766.PubMedGoogle Scholar
  109. 109.
    Seidel P, Merfort I, Hughes JM, Oliver BG, Tamm M, Roth M. Dimethyl fumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L326–39. Epub 2009/05/26. doi:10.1152/ajplung.90624.2008. PubMed PMID: 19465513.
  110. 110.
    Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc. 2014;89(2):225–40. Epub 2014/02/04. doi:10.1016/j.mayocp.2013.11.002. PubMed PMID: 24485135.
  111. 111.
    Kunze R, Urrutia A, Hoffmann A, Liu H, Helluy X, Pham M, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol. 2015;266:99–111. Epub 2015/03/01. doi:10.1016/j.expneurol.2015.02.022. PubMed PMID: 25725349.
  112. 112.
    van Kester MS, Bouwes Bavinck JN, Quint KD. PML in patients treated with dimethyl fumarate. N Engl J Med. 2015;373(6):583–4. Epub 2015/08/06. doi:10.1056/NEJMc1506151#SA2. PubMed PMID: 26244326.
  113. 113.
    Nishihara H, Shimizu F, Sano Y, Takeshita Y, Maeda T, Abe M, et al. Fingolimod prevents blood-brain barrier disruption induced by the sera from patients with multiple sclerosis. PloS One. 2015;10(3):e0121488. Epub 2015/03/17. doi:10.1371/journal.pone.0121488. PubMed PMID: 25774903; PubMed Central PMCID: PMCPMC4361641.
  114. 114.
    Frohman EM, Havrdova E, Lublin F, Barkhof F, Achiron A, Sharief MK, et al. Most patients with multiple sclerosis or a clinically isolated demyelinating syndrome should be treated at the time of diagnosis. Arch Neurol. 2006;63:614–9. United States.CrossRefPubMedGoogle Scholar
  115. 115.
    Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci. 2006;27(1):48–55. Epub 2005/11/29. doi:10.1016/j.tips.2005.11.002. PubMed PMID: 16310865.
  116. 116.
    Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, et al. Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol. 1995;37(1):82–8. Epub 1995/01/01. doi:10.1002/ana.410370115. PubMed PMID: 7818262.
  117. 117.
    Oshima T, Laroux FS, Coe LL, Morise Z, Kawachi S, Bauer P, et al. Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res. 2001;61(1):130–43. Epub 2001/02/13. doi:10.1006/mvre.2000.2288. PubMed PMID: 11162203.
  118. 118.
    Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry. 2010;68(10):930–41. Epub 2010/08/10. doi:10.1016/j.biopsych.2010.06.012. PubMed PMID: 20692646.
  119. 119.
    Leitner GC, Vogelsang H. Pharmacological- and non-pharmacological therapeutic approaches in inflammatory bowel disease in adults. World J Gastrointest Pharmacol Ther. 2016;7(1):5–20. Epub 2016/02/09. doi:10.4292/wjgpt.v7.i1.5. PubMed PMID: 26855808; PubMed Central PMCID: PMCPMC4734954.
  120. 120.
    Hegen H, Adrianto I, Lessard CJ, Millonig A, Bertolotto A, Comabella M, et al. Cytokine profiles show heterogeneity of interferon-beta response in multiple sclerosis patients. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e202. Epub 2016/02/20. doi:10.1212/nxi.0000000000000202. PubMed PMID: 26894205; PubMed Central PMCID: PMCPMC4747480.
  121. 121.
    Matsumoto T, Nakamura I, Miura A, Momoyama G, Ito K. New-onset multiple sclerosis associated with adalimumab treatment in rheumatoid arthritis: a case report and literature review. Clin Rheumatol. 2013;32(2):271–5. Epub 2012/11/15. doi:10.1007/s10067-012-2113-2. PubMed PMID: 23149905.
  122. 122.
    Bitsch A, Kuhlmann T, Da Costa C, Bunkowski S, Polak T, Bruck W. Tumour necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia. 2000;29(4):366–75. Epub 2000/02/01. PubMed PMID: 10652446.CrossRefPubMedGoogle Scholar
  123. 123.
    Plumb J, McQuaid S, Cross AK, Surr J, Haddock G, Bunning RA, et al. Upregulation of ADAM-17 expression in active lesions in multiple sclerosis. Mult Scler (Houndmills, Basingstoke, England). 2006;12(4):375–85. Epub 2006/08/12. PubMed PMID: 16900751.Google Scholar
  124. 124.
    Selmaj KW, Raine CS. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol. 1988;23(4):339–46. Epub 1988/04/01. doi:10.1002/ana.410230405. PubMed PMID: 3132891.
  125. 125.
    Andreadou E, Kemanetzoglou E, Brokalaki C, Evangelopoulos ME, Kilidireas C, Rombos A, et al. Demyelinating disease following anti-TNFa treatment: a Causal or Coincidental Association? Report of four cases and review of the literature. Case Rep Neurol Med. 2013;2013:671935. Epub 2013/06/14. doi:10.1155/2013/671935. PubMed PMID: 23762678; PubMed Central PMCID: PMCPMC3670521.
  126. 126.
    Enayati PJ, Papadakis KA. Association of anti-tumor necrosis factor therapy with the development of multiple sclerosis. J Clin Gastroenterol. 2005;39(4):303–6. Epub 2005/03/11. PubMed PMID: 15758624.CrossRefPubMedGoogle Scholar
  127. 127.
    Naylor SL, Sakaguchi AY, Shows TB, Law ML, Goeddel DV, Gray PW. Human immune interferon gene is located on chromosome 12. J Exp Med. 1983;157(3):1020–7. Epub 1983/03/01. PubMed PMID: 6403645; PubMed Central PMCID: PMCPMC2186972.CrossRefPubMedGoogle Scholar
  128. 128.
    Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101. Epub 2007/11/06. doi:10.1016/s0065-2776(07)96002-2. PubMed PMID: 17981204.
  129. 129.
    Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP, et al. Three-dimensional structure of recombinant human interferon-gamma. Science. 1991;252(5006):698–702. Epub 1991/05/03. PubMed PMID: 1902591.CrossRefPubMedGoogle Scholar
  130. 130.
    Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand. 1988;78(4):318–23. Epub 1988/10/01. PubMed PMID: 3146861.CrossRefPubMedGoogle Scholar
  131. 131.
    Lu CZ, Jensen MA, Arnason BG. Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis. J Neuroimmunol. 1993;46(1–2):123–8. Epub 1993/07/01. PubMed PMID: 7689582.CrossRefPubMedGoogle Scholar
  132. 132.
    Woodroofe MN, Cuzner ML. Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine. 1993;5(6):583–8. Epub 1993/11/01. PubMed PMID: 8186370.CrossRefPubMedGoogle Scholar
  133. 133.
    Panitch HS, Hirsch RL, Schindler J, Johnson KP. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology. 1987;37(7):1097–102. Epub 1987/07/01. PubMed PMID: 3110648.CrossRefPubMedGoogle Scholar
  134. 134.
    Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet (London, England). 1987;1(8538):893–5. Epub 1987/04/18. PubMed PMID: 2882294.CrossRefGoogle Scholar
  135. 135.
    Billiau A, Heremans H, Vermeire K, Matthys P. Immunomodulatory properties of interferon-gamma. An update. Ann N Y Acad Sci. 1998;856:22–32. Epub 1999/01/26. PubMed PMID: 9917861.CrossRefPubMedGoogle Scholar
  136. 136.
    Duong TT, St Louis J, Gilbert JJ, Finkelman FD, Strejan GH. Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J Neuroimmunol. 1992;36(2–3):105–15. Epub 1992/02/01. PubMed PMID: 1732276.CrossRefPubMedGoogle Scholar
  137. 137.
    de Lorgeril M, Salen P, Defaye P, Rabaeus M. Recent findings on the health effects of omega-3 fatty acids and statins, and their interactions: do statins inhibit omega-3? BMC Med. 2013;11:13. doi:10.1186/1741-7015-11-5. PubMed PMID: WOS:000318423200002.CrossRefGoogle Scholar
  138. 138.
    Wang J, Xiao Y, Luo M, Zhang X, Luo H. Statins for multiple sclerosis. Cochrane Database Syst Rev. 2010 Dec 8;(12):CD008386. doi: 10.1002/14651858.CD008386.pub2.
  139. 139.
    Yun JW, Xiao A, Tsunoda I, Minagar A, Alexander JS. From trash to treasure: The untapped potential of endothelial microparticles in neurovascular diseases. Pathophysiology. 2016 Dec;23(4):265-274. doi: 10.1016/j.pathophys.2016.08.004. Epub 2016 Aug 12.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • J. Winny Yun
    • 1
  • Alireza Minagar
    • 2
  • J. Steven Alexander
    • 1
    • 2
  1. 1.Department of Molecular and Cellular PhysiologyLSU Health Sciences CenterShreveportUSA
  2. 2.Departments of NeurologyLSU Health Sciences CenterShreveportUSA

Personalised recommendations