Skip to main content

Confinement Systems for Controlled Thermonuclear Fusion

  • Chapter
  • First Online:
  • 777 Accesses

Abstract

An increase on energy demands in our today’s life going forward to the future has forced us to look into alternative production of energy in a clean way, along the nuclear fission and fossil fuel way of producing energy. Scientists are suggesting controlled thermonuclear fusion reaction as an alternative way of generating energy, either via magnetic confinement or inertial confinement of plasma to generate heat for producing steam and as a result electricity to meet such increase on energy demand. Each of these approaches has their own technical and scientific challenges, which scientists need to overcome. This chapter talks about way of confining plasma and the systems of the confinement, which are able to impose a controlled way of thermonuclear fusion reaction for this purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.D. Lawson, Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. 70, 6 (1957)

    Google Scholar 

  2. U.S. Inan, M. Golkowski, Principles of Plasma Physics for Engineers and Scientists (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  3. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Springer International Publishing, Cham, 2015)

    Google Scholar 

  4. J. Raeder, K. Borrass, R. Bunde, W. Danner, R. Klingelhӧfer, L. Lengyel, F. Leuterer, M. Soll, Controlled Nuclear Fusion, Fundamentals of its Utilization for Energy Supply (Wiley, Chichester, 1986)

    Google Scholar 

  5. S. Glasstone, R. Lovberg, Controlled Thermonuclear Reactions (D. Van Nostrand Company, Inc., New York, 1960)

    Google Scholar 

  6. M. Rosenbluth, USAE Report LA-2030 (1956)

    Google Scholar 

  7. Levine, USAE Report TID-7503 (1955), p. 195

    Google Scholar 

  8. R.J. Taylor, Proc. Phys. Soc. (London) B70(31), 1049 (1957)

    Article  Google Scholar 

  9. V.D. Shafranov, J. Nucl. Energy 5, 86 (1957)

    MathSciNet  Google Scholar 

  10. S. Glasstone, Controlled Nuclear Fusion (U.S. Atomic Energy Commission, Office of Information Services, 1974)

    Google Scholar 

  11. O.A. Anderson, W.R. Baker, S.A. Colgate, H.P. Furth, J. Ise, R.V. Pyle, R.E. Wright, Phys. Rev. 110, 1375 (1958)

    Article  Google Scholar 

  12. M. Rosenbluth, R. Grawin, A. Rosenbluth, USAE Report LA-1850 (1954)

    Google Scholar 

  13. M. Rosenbluth, in Magnetohydrodynamics, ed. by K.M. Landshoff (Stanford University Press, Stanford, 1957), p. 57

    Google Scholar 

  14. R.L. Hagenson, A toroidal fusion reactor design based on the reversed-field pinch, PhD dissertation, 1978

    Google Scholar 

  15. M.D. Kruskal, Large-scale instability in the stellarator, USAEC Rept. NYO-6045, 1954

    Google Scholar 

  16. V.D. Shafranov, The stability of a cylindrical gaseous conductor in a magnetic field. Atonnaiia Energiia (English Translation) 1, 709–713 (1956)

    Google Scholar 

  17. L.A. Artsimovich, Tokamak devices. Nucl. Fusion 12, 215–252 (1972)

    Article  Google Scholar 

  18. S.O. Dean, Chairman, Status and objectives of tokamak systems for fusion research, USAEC Rept. WASH-1295, 1973

    Google Scholar 

  19. H. Toyaxna et al., Experiments en noncircular Tokamak and related topics, in Sixth International Conference en Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, West Germany, vol. 6, IAEA-CN-35/A10-4 (1976)

    Google Scholar 

  20. H.A.B. Bodin, Reversed field pinches, in Third Topical Conference on Pulsed High Beta Plasmas, Culham, United Kingdom, vol. 3 (1975), pp. 39–57

    Google Scholar 

  21. D.A. Baker, R.L. Hagenson, R.A. Krakowski, K.I. Thomason, Summary of the reversed-field Z-pinch concept, USERDA Rept. LA-UR-77-459, Los Alamos Scientific Laboratory, Los Alamos, NM, 1977

    Google Scholar 

  22. D.A. Baker, J.N. DiMarco, The LASL Reversed-Field Pinch Program Plan, USERDA Rept. LA-6177-MS, Los Alamos Scientific Laboratory, Los Alamos, NM, 1975

    Google Scholar 

  23. M.D. Kruskal, M. Schwarzschild, Sane instabilities of a completely ionized plasma. Proc. R. Soc. Lond. A223, 348–360 (1954)

    Article  MATH  Google Scholar 

  24. R.J. Taylor, Hydromagnetic instabilities of an ideally conducting fluid. Phys. Soc. 570, 31–48 (1957)

    Article  MATH  Google Scholar 

  25. M.N. Rosenbluth, Stability of the Pinch, USAEC Rept. IÀ-2030, Los Alamos Scientific Laboratory, Los Alamos, NM, 1956

    Google Scholar 

  26. V.D. Shafranov, On the stability of a cylindrical gaseous conductor in a magnetic field. J. Nucl Energy 5, 86–91 (1957)

    MathSciNet  Google Scholar 

  27. R.J. Taylor, The stability of a constricted gas discharge, in Proceedings of the Second United Nations International Conference on the Peaceful Uses Atomic Energy, Geneva, Switzerland, vol. 2(31) (1958), pp. 160–170

    Google Scholar 

  28. M. Kruskal, J.L. Tuck, The instability of a pinched fluid with a longitudinal magnetic field. Proc. R. Soc. Lond. A245, 222–237 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.B. Suydam, Stability of a linear pinch, in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, Switzerland, vol. 2(31) (1958), pp. 157–159

    Google Scholar 

  30. W.A. Newcomb, Hydromagnetic stability of a diffuse linear pinch. Ann. Phys. 10, 232–267 (1960)

    Article  MATH  Google Scholar 

  31. H.P. Furth, Sufficient conditions for hydromagnetic stability of a diffuse linear pinch. Phys. Fluids 3, 977–981 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. B.R. Suydam, Stability of a linear pinch, Part II, USAEC Rept. LAMS-2381, Los Alamos Scientific Laboratory, Los Alamos, NM, 1960

    Google Scholar 

  33. D.A. Baker, L.W. Mann, Progress Report of the LASL Controlled Thermonuclear Research Program, USERDA Rept. IÀ-5656-ER, Los Alamos Scientific Laboratory, Los Alamos, NM, 1974

    Google Scholar 

  34. D.A. Baker et al., Z-pinch experiments with shock heating. in Proceedings of the IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, Madison, WI, vol. 4(1) (1971), pp. 203–216

    Google Scholar 

  35. D.C. Robinson, High-g diffuse pinch configurations. Plasma Phys. 13, 439–462 (1971)

    Article  Google Scholar 

  36. C. Mercier, A necessary criteria of hydromagnetic stability for a plasma with symmetry of revolution. Nucl. Fusion 1, 47–53 (1960)

    Article  Google Scholar 

  37. D.A. Baker, L.W. Mann, MHD studies of numerically obtained toroidal equilibrium, in Proceedings of the Second Topical Conference on Pulsed High Beta Plasmas, Munich, West Germany, vol. 2 (1972), pp. 69–72

    Google Scholar 

  38. D.A. Haberstich et al., Stability and diffusion of the ZT-I reversed field pinch, in Third Topical Conference on Pulsed High Beta Plasmas, Culham, England, vol. 3 (1975), pp. 249–253

    Google Scholar 

  39. J.E. Crow, J. Kileen, D.C. Robinson, Resistive instabilities in diffuse pinches, in Proceedings of the Sixth European Conference on Controlled Fusion and Plasma Physics, Moscow USSR, vol. 6(1) (1973), pp. 269–272

    Google Scholar 

  40. J.A. Diabiase, Numerical studies of resistive instabilities in diffuse pinches, UâZZCA Rept. UCRL-51591, Lawrence Livermore Laboratory, Livermore, CA, 1974

    Google Scholar 

  41. E.P. Butt et al. Confinement and stability of high beta plasma in a reversed field pinch, in Proceedings of the Fifth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, Japan, vol. 5(3) (1974) pp. 417–429

    Google Scholar 

  42. L. Turner, Vlasov-fluid theory of short wavelength instabilities of a sharp-boundary screw pinch. Phys. Fluids 20(4), 662–674 (1977)

    Article  Google Scholar 

  43. J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33(19), 1139–1141 (1974)

    Article  Google Scholar 

  44. S. Ortolani, G. Rostagni, Reverse field configurations with minimum potential energy, in Third Topical Conference on Pulsed High Beta Plasmas, Culham, UK, vol. 3 (1975), pp. 335–339

    Google Scholar 

  45. D.A. Baker, J.A. Phillips, Pressure-balance limitations in Z-pinches with diffusion heating. Phys. Rev. Lett. 32(5), 202–205 (1974)

    Article  Google Scholar 

  46. A.G. Sgro, C.W. Nielson, Hybrid model studies of magnetic field diffusion in high-Z-pinches, in Third Topical Conference on Pulsed High Beta Plasmas, Culham, UK, vol. 3 (1975), pp. 329–334

    Google Scholar 

  47. R.A. Krakowski, R.L. Hagenson, G.E. Cort, First wall thermal-mechanical analyses of the reference theta-pinch reactor. Nucl. Technol. 34(2), 217–241 (1976)

    Google Scholar 

  48. R.A. Krakowski et al., CTR-DOT quarterly report for the period July 1–September 30, Los Alamos Scientific Laboratory, Los Alamos, NM, 1976

    Google Scholar 

  49. K.I. Thamassen et al., Conceptual engineering design of a one-GJ fast discharging honopolar machine for the reference theta-pinch fusion reactor, EPRI ER-246, Project 469, Electric Power Research Institute, 1976

    Google Scholar 

  50. J.P. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  51. A.C. Kolb, C.B. Dobbie, H.R. Griem, Field mixing and associated neutron production in a plasma. Phys. Rev. Lett. 3(1), 5–7 (1959)

    Article  Google Scholar 

  52. M. Tuszewski, Field reversed configurations. Nucl. Fusion 28(11), 2033 (1988)

    Article  Google Scholar 

  53. K.F. McKenna, W.T. Armstrong, D.C. Barnes, R.R. Bartsch, R.E. Chrien, J.C. Cochrane, P.L. Klingner, W.W. Hugrass, R.K. Linford, D.J. Rej, J.L. Schwarzmeier, E.G. Sherwood, R.E. Siemon, R.L. Spencer, M. Tuszewski, Field-reversed configuration research at Los Alamos. Nucl. Fusion 25(9), 1317 (1985)

    Article  Google Scholar 

  54. A.L. Hoffman, L.L. Carey, E.A. Crawford, D.G. Harding, T.E. DeHart, K.F. McDonald, J.L. McNeil, R.D. Milroy, J.T. Slough, R. Maqueda, G.A. Wurden, The large-s field-reversed configuration experiment. Fusion Sci Technol. 23(2), 185–207 (1993)

    Google Scholar 

  55. D. Kirtley, D.L. Brown, A.D. Gallimore, J. Haas, Details on an AFRL field reversed configuration plasma device, Technical report, Air Force Research Laboratory, 2005

    Google Scholar 

  56. http://fti.neep.wisc.edu/research/frc

  57. W.S. Harris, E. Trask, T. Roche, E.P. Garate, W.W. Heidbrink, R. McWilliams, Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration. Phys. Plasmas 16(11), 12509 (2009)

    Article  Google Scholar 

  58. Y. Poddar, Can Startups Make Nuclear Fusion Possible? (Stanford University, Stanford, 2014)

    Google Scholar 

  59. J. Slough, A. Pancoth, D. Kirtley, G. Votrobek, Electromagnetically Driven Fusion Propulsion, IEPC-2013.372

    Google Scholar 

  60. D. Chandler, MIT tests unique approach to fusion power. MIT News, MIT News Office, March 19, 2008. Accessed March 2008

    Google Scholar 

  61. J. Kesner, A. Boxer, J. Ellsworth, I. Karim, Overview of LDX results. Presented at the APS Meeting, Philadelphia, November 2, 2006, Paper VP1.00020

    Google Scholar 

  62. LDX funding canceled. Archived from the origi nal on 2013-01-17. Retrieved June 27, 2012

    Google Scholar 

  63. N. Krall, Stabilization of hot electron plasma by a cold background. Phys. Fluids 9, 820 (1966)

    Article  Google Scholar 

  64. M.E. Mauel, J. Kesner, Fusion Technologies for Tritium-Suppressed D-D Fusion. White Paper prepared for FESAC Materials Science Subcommittee, December 19, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zohuri, B. (2017). Confinement Systems for Controlled Thermonuclear Fusion. In: Magnetic Confinement Fusion Driven Thermonuclear Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-51177-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51177-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51176-4

  • Online ISBN: 978-3-319-51177-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics