Advertisement

Personality Impacts on the Participation in Peer-to-Peer (P2P) Travel Accommodation Services

  • Ilona PezenkaEmail author
  • Christian Weismayer
  • Lidija Lalicic
Conference paper

Abstract

Peer-to-peer (P2P) services rapidly has become more and more important within the travel accommodation service industry over the last years. Thus it is crucial to know why certain groups of people do or do not participate in P2P accommodation services. Comparisons between the Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, and neuroticism) reveal insight into differences between Airbnb-users and Airbnb-nonusers with regards to their personality. Equality constraints on the measurement construct across the two groups guarantee for the comparability between them as well as reveal existing differences on the five latent dimensions. Comparableness is derived by a recently invented alignment procedure within the structural equation modelling (SEM) framework.

Keywords

Big Five Personality Peer-to-peer (P2P) Travel accommodation Sharing economy 

References

  1. Airbnb. (2016). About us. Retrieved from https://www.airbnb.com/about/about-us.
  2. Allport, G. W. (1937). Personality: A psychological interpretation. New York: Henry Holt.Google Scholar
  3. Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 16, 397–438.CrossRefGoogle Scholar
  4. Asparouhov, T., & Muthén, B. (2013). Multiple-group factor analysis alignment. Retrieved from http://statmodel2.com/examples/webnotes/webnote18.pdf.
  5. Asparouhov, T., & Muthén, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling: A Multidisciplinary Journal, 21, 1–14.CrossRefGoogle Scholar
  6. Barrick, M. R., & Mount, M. K. (1991). The Big Five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 1–26.CrossRefGoogle Scholar
  7. Belk, R. (2007). Why not share rather than own? The Annals of the American Academy of Political and Social Science, 611(1), 126–140.CrossRefGoogle Scholar
  8. Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595–1600.CrossRefGoogle Scholar
  9. Botsman, R. (2013). The sharing economy lacks a shared definition. Retrieved from http://www.fastcoexist.com/3022028/the-sharing-economy-lacks-a-shareddefinition.
  10. Chamorro-Premuzic, T., & Furnham, A. (2003). Personality predicts academic performance: Evidence from two longitudinal university samples. Journal of Research in Personality, 37(4), 319–338.CrossRefGoogle Scholar
  11. Cohen, E. (1972). Towards a sociology of international tourism. Social Research, 39, 164–182.Google Scholar
  12. Correa, T., Hinsley, A. W., & De Zuniga, H. G. (2010). Who interacts on the web? The intersection of users’ personality and social media use. Computers in Human Behavior, 26(2), 247–253.CrossRefGoogle Scholar
  13. Costa, P. T., & McCrae, R. (1985). The neo personality inventory. Odessa: Psychological Assessment Resources.Google Scholar
  14. Costa, P. T., & McCrae, R. (1992). Revised NEO personality inventory (NEO-PI-R) and NEO five factor inventory—professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  15. Dolnicar, S., & Otter, T. (2003). Which hotel attributes matter? A review of previous and a framework for future research. In Griffin T. & Harris R. (Eds.), Proceedings of the 9th Annual Conference of the Asia Pacific Tourism Association (pp. 176–188).Google Scholar
  16. Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing economy: The role of personal photos in Airbnb. Tourism Management, 55, 62–73.CrossRefGoogle Scholar
  17. Eysenck, H., & Eysenck, S. (1970). The eysenck personality inventory. San Diego: Edits.Google Scholar
  18. Frew, E. A., & Shaw, R. N. (1999). The relationship between personality, gender, and tourism behavior. Tourism Management, 20(2), 193–202.CrossRefGoogle Scholar
  19. Gerlitz, J. Y., & Schupp, J. (2005). Zur Erhebung der Big-Five-basierten Persoenlichkeitsmerkmale im SOEP [The measurement of the Big Five personality traits in the SOEP]. DIW Research Notes 4. Berlin: DIW Berlin.Google Scholar
  20. Guttentag, D. (2015). Airbnb: Disruptive innovation and the rise of an informal tourism accommodation sector. Current Issues in Tourism, 18(12), 1192–1217.CrossRefGoogle Scholar
  21. Hamari, J., Sjöklint, M., & Ukkonen, A. (2015). The sharing economy: Why people participate in collaborative consumption. Journal of the Association for Information Science and Technology. doi: 10.1002/asi.23552.Google Scholar
  22. Holland, J. L. (1985). Making vocational choices: A theory of vocational personalities and work environments (2nd ed.). Englewood Cliffs: Prentice-Hall.Google Scholar
  23. Huston, C. (2015). As Airbnb grows, hotel prices expected to drop. Retrieved from www.marketwatch.com/story/as-airbnb-grows-hotel-prices-expected-to-drop-2015-08-13.
  24. Jackson, M., & Inbakaran, R. (2006). Development of a tourist personality inventory. In P. A. Whitelaw and B. G. O’Mahony (Eds.). CAUTHE 2006: To the city and beyond (pp. 932–951).Google Scholar
  25. Jackson, M., White, G., & White, M. (2001). Developing a tourist personality typology. In C. Pforr and B. Janeczko (Eds.). CAUTHE 2001: Capitalising on research (pp. 177–184).Google Scholar
  26. Jani, D., Jang, J. H., & Hwang, Y. H. (2011). Personality and tourists’ Internet behaviour. In R. Law, M. Fuchs, and F. Ricci (Eds.), Information and communication technologies in tourism 2011 (pp. 587–598). Springer International Publishing.Google Scholar
  27. John, O. P., & Srivastava, S. (1999). Big Five trait taxonomy. In L. A. Pervin and O. P. John, (Eds.), Handbook of personality: Theory and research (2nd ed.). New York: The Guilford Press.Google Scholar
  28. Kvasova, O. (2015). The Big Five personality traits as antecedents of eco-friendly tourist behavior. Personality and Individual Differences, 83, 111–116.CrossRefGoogle Scholar
  29. Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When „good“ indicators are bad and „bad“ indicators are good. Psychological Methods, 4(2), 192–211.CrossRefGoogle Scholar
  30. Milfont, T. L., & Fischer, R. (2010). Testing Measurement Invariance Across Groups: Applications in Cross-Cultural Research. International Journal of Psychological Research, 3(1), 111–121.Google Scholar
  31. Möhlmann, M. (2015). Collaborative consumption: Determinants of satisfaction and the likelihood of using a sharing economy option again. Journal of Consumer Behaviour, 14(3), 193–207.CrossRefGoogle Scholar
  32. Muthén, B., & Asparouhov, T. (2014). IRT studies of many groups: The alignment method. Frontiers in Psychology: Quantitative Psychology and Measurement, 5, 1–7.Google Scholar
  33. Muthén, L. K., & Muthén, B. O. (1998). Mplus statistical analyses with latent variables. User’s Guide 7. Los Angeles, CA: Muthén & Muthén.Google Scholar
  34. Nickerson, N., & Ellis, G. (1991). Traveler types and activation theory: A comparison of two models. Journal of Travel Research, 30, 26–31.CrossRefGoogle Scholar
  35. Olson, K. (2013). National study quantifies reality of the ‘Sharing Economy’ movement. Retrieved from http://www.campbell-mithun.com/678_national-study-quantifiesreality-of-the-sharing-economy-movement.
  36. Oskam, J., & Boswijk, A. (2016). Airbnb: The future of networked hospitality businesses. Journal of Tourism Futures, 2(1), 22–42.CrossRefGoogle Scholar
  37. Pearce, P. (1982). The social psychology of tourist behaviour. Oxford: Pergamon.Google Scholar
  38. Plog, S. (1974). Why destination areas rise and fall in popularity. The Cornell Hotel and Restaurant Administration Quarterly, 14(4), 55–58.CrossRefGoogle Scholar
  39. Plog, S. (2001). Why Destination Areas Rise and Fall in Popularity: An Update of a Cornell Quarterly Classic. Cornell Hospitality Quarterly, 42(3), 13–24.CrossRefGoogle Scholar
  40. Steinmetz, H., Schmidt, P., Tina-Booh, A., Wieczorek, S., & Schwartz, S. H. (2009). Testing measurement invariance using multigroup CFA: Differences between educational groups in human values measurement. Quality & Quantity, 43, 599–616.CrossRefGoogle Scholar
  41. Tussyadiah, I. P. (2015). An exploratory study on drivers and deterrents of collaborative consumption in travel. In I. Tussyadiah and A. Inversini (Eds.), Information and communication technologies in tourism 2015 (pp. 817–830). Springer International.Google Scholar
  42. Tussyadiah, I. P., & Pesonen, J. (2015). Impacts of peer-to-peer accommodation use on travel patterns. Journal of Travel Research. doi: 10.1177/0047287515608505.Google Scholar
  43. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  44. Week, L. (2012). I am not a tourist: Aims and implications of “traveling”. Tourist Studies, 12(2), 186–203.CrossRefGoogle Scholar
  45. Yoo, K. H., & Gretzel, U. (2011). Influence of personality on travel-related consumer-generated media creation. Computers in Human Behavior, 27(2), 609–621.CrossRefGoogle Scholar
  46. Zaman, M., Botti, L., & Thanh, T. V. (2016). Weight of criteria in hotel selection: An empirical illustration based on TripAdvisor criteria. European Journal of Tourism Research 13.Google Scholar
  47. Zhou, B., & Kockelman, K. M. (2011). Opportunities for and impacts of carsharing: A survey of the Austin, Texas market. International Journal of Sustainable Transportation, 5(3), 135–152.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ilona Pezenka
    • 1
    Email author
  • Christian Weismayer
    • 2
  • Lidija Lalicic
    • 2
  1. 1.Institute for Communication, Marketing & SalesFHWien University of Applied Sciences of WKWViennaAustria
  2. 2.MODUL University ViennaViennaAustria

Personalised recommendations