Advertisement

The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems

  • David RomeroEmail author
  • Peter Bernus
  • Ovidiu Noran
  • Johan Stahre
  • Åsa Fast-Berglund
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 488)

Abstract

A vision for the Operator 4.0 is presented in this paper in the context of human cyber-physical systems and adaptive automation towards human-automation symbiosis work systems for a socially sustainable manufacturing workforce. Discussions include base concepts and enabling technologies for the development of human-automation symbiosis work systems in Industry 4.0.

Keywords

Operator 4.0 Human cyber-physical systems Adaptive automation Human-automation symbiosis Socially sustainable manufacturing 

References

  1. 1.
    BCG Group: Report on Man and Machine in Industry 4.0 (2015)Google Scholar
  2. 2.
    European Factories of the Future Research Association (EFFRA) Roadmap 2020Google Scholar
  3. 3.
    Tzafestas, S.: Concerning human-automation symbiosis in the society and the nature. Int. J. Fact. Autom. Robot. Soft Comput. 1(3), 6–24 (2006)Google Scholar
  4. 4.
    Camarinha-Matos, L.M., Rabelo, R., Ósorio, L.: Balanced automation. In: Tzafestas, S.G. (ed.) Computer-Assisted Management and Control of Manufacturing Systems, pp. 376–413. Springer, London (1996)Google Scholar
  5. 5.
    Kovács, I., Brandão-Moniz, A.: Issues on the anthropocentric production systems. In: Camarinha-Matos, L.M., Afsarmanesh, H. (eds.) Balanced Automation Systems: Architectures and Design Methods, pp. 131–140. Springer, New York (1995)CrossRefGoogle Scholar
  6. 6.
    Romero, D., Noran, O., Stahre, J., Bernus, P., Fast-Berglund, Å.: Towards a human-centred reference architecture for next generation balanced automation systems: human-automation symbiosis. Adv. Prod. Manag. Syst. 460, 556–566 (2015)Google Scholar
  7. 7.
    Hancock, P.A., Chignell, M.H.: Adaptive control in human-machine systems. In: Hancock, P.A. (ed.) Human Factors Psychology, pp. 305–345. Elsevier Science Publishers, North Holland (1987)CrossRefGoogle Scholar
  8. 8.
    Hancock, P.A., Jagacinski, R.J., Parasuraman, R., et al.: Human-automation interaction research: past present and future. Ergon. Des. 21(2), 9–14 (2013)Google Scholar
  9. 9.
    Sheridan, T., Parasuraman, R.: Human-automation interaction. Hum. Factors Ergon. 1(1), 89–129 (2006)CrossRefGoogle Scholar
  10. 10.
    Kidd, P.: Organisation People and Technology in European Manufacturing. CEC, FAST, Brussels (1992)Google Scholar
  11. 11.
    Lehner, F.: Anthropocentric Production Systems: The European Response to Advanced Manufacturing and Globalization. CEC, Brussels (1992)Google Scholar
  12. 12.
    Kay, M.: Adaptive automation accelerates process development. Bioprocess Int. 4(4), 70–78 (2006)MathSciNetGoogle Scholar
  13. 13.
    Calefato, C., Montanari, R., Tesauri, F.: The adaptive automation design. In: Asai, K. (ed.) Human Computer Interaction: New Developments, pp. 141–154. InTech, Rijeka (2008)Google Scholar
  14. 14.
    Inagaki, T.: Adaptive automation: sharing and trading of control. In: Handbook of Cognitive Task Design, pp. 147–169 (2003). Chapter 8Google Scholar
  15. 15.
    Munir, S., Stankovic, J.A., Liang, C-J.M., Lin, S.: Cyber-physical system challenges for human-in-the-loop control. In: Feedback Computing (2013)Google Scholar
  16. 16.
    Kasabov, N.: Introduction: hybrid intelligent adaptive systems. Int. J. Intell. Syst. 6, 453–454 (1998)CrossRefGoogle Scholar
  17. 17.
    Boyd, J.R.: The Essence of Winning and Losing (1996). www.dnipogo.org
  18. 18.
    Osinga, F.P.B.: Science, Strategy and War: The Strategic Theory of John Boyd. Eburon Academic Publishers, Delft (2005)Google Scholar
  19. 19.
    Willson, G.F., Russel, C.A.: Performance enhancement in a UAV task using psycho-physiologically determined adaptive aiding. Hum. Factors 49(6), 1005–1019 (2007)CrossRefGoogle Scholar
  20. 20.
    Endsley, M.R.: Towards a theory of situation awareness in dynamic systems. Hum. Factors 37(1), 32–64 (1995)CrossRefGoogle Scholar
  21. 21.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  22. 22.
    Ricci, N., Fitzgerald, M., Ross, A.M., Rhodes, D.H.: Architecting systems of systems with Ilities: an overview of the SAI method. In: Conference on Systems Engineering Research (2014)Google Scholar
  23. 23.
    Capability (General) Business Dictionary. http://www.businessdictionary.com (2016)
  24. 24.
    Committee on Measuring Human Capabilities: Measuring Human Capabilities: An Agenda for Basic Research on the Assessment of Individual and Group Performance Potential for Military Accession (2015)Google Scholar
  25. 25.
    Campion, M.A.: Personnel selection for physically demanding jobs: review and recommendations. Pers. Psychol. 36, 527–550 (1983)CrossRefGoogle Scholar
  26. 26.
    Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)CrossRefGoogle Scholar
  27. 27.
    Lee, J.D., Seppelt, B.D.: Human factors and ergonomics in automation design. In: Salvendy, G. (ed.) Handbook of Human factors and Ergonomics, pp. 1615–1642. Wiley, Hoboken (2012). Sensory activityCrossRefGoogle Scholar
  28. 28.
    Attwood, D., Deeb, J., Danz-Reece, M.: Personal actors. In: Tooley, M. (ed.) Design Engineering Manual, pp. 234–247. Elsevier, New York (2010). Chapter 6.1Google Scholar
  29. 29.
    Simon, H.: Artificial intelligence as a framework for understanding intuition. J. Econ. Psychol. 24, 265–277 (2003)CrossRefGoogle Scholar
  30. 30.
    Stone, H., Bleibaum, R., Thomas, H.A.: Sensory Evaluation Practices, 4th edn. Elsevier, Amsterdam (2012)Google Scholar
  31. 31.
    Carrol, J.B.: Human Cognitive Abilities. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  32. 32.
    Hutton, R.J.B., Militello, L.G.: Applied cognitive task analysis (ACTA): a practitioner’s toolkit for understanding cognitive task demands. Ergonomics 41(11), 1618–1641 (1998)CrossRefGoogle Scholar
  33. 33.
    Falzon, P., Gaines, B.R., Monk, A.F.: Cognitive Ergonomics: Understanding, Learning, and Designing Human-Computer Interaction. Academic Press, Cambridge (1990)Google Scholar
  34. 34.
    Hacker, W.: Allgemeine Arbeitspsychologie: Psychische Regulation von Wissens Denk und körperlicher Arbeit, 2nd edn. Verlag Hans Huber, Bern (2005)Google Scholar
  35. 35.
    Bailey, R.W.: Human Performance Engineering, 2nd edn. International Prentice-Hall, London (1996)Google Scholar
  36. 36.
    Kaber, D.B., Riley, J.M., Tan, K., Endsley, M.R.: On the design of adaptive automation for complex systems. Int. J. Cogn. Ergon. 5(1), 37–57 (2001)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • David Romero
    • 1
    • 2
    Email author
  • Peter Bernus
    • 2
  • Ovidiu Noran
    • 2
  • Johan Stahre
    • 3
  • Åsa Fast-Berglund
    • 3
  1. 1.Tecnológico de MonterreyMonterreyMexico
  2. 2.Griffith UniversityNathanAustralia
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations