Advertisement

Creep of Zirconium and Zirconium Alloys

  • Troy A. HayesEmail author
  • Michael E. Kassner
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Controlling mechanisms for creep of zirconium and zirconium alloys continue to be debated. In previous studies, the authors analyzed cumulative zirconium and zirconium alloy creep data over a broad range of stresses (0.1–115 MPa) and temperatures (300–850 °C) based on a literature review and experiments. Zirconium obeys traditional power-law creep with a stress exponent of approximately 6.4 over stain-rates and temperatures usually associated with the conventional “five-power-law” regime. The measured activation energies for creep correlated with the activation energies for zirconium self-diffusion. Thus, dislocation climb, rather than the often assumed glide mechanism, appears to be rate controlling. The stress exponents of the creep data in the five-power-law regime for Zircaloy-2 and Zircaloy-4 were determined to be 4.8 and 5.0, respectively. Further advances in the understanding of the controlling mechanisms for zirconium and zirconium alloys will be presented based on a review of the literature over the past decade.

Keywords

Zirconium Creep Power-law creep Zirconium alloys Zircaloy 

Notes

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract W-7405-ENG-48, and a subcontract from LLNL to the University of California, San Diego, under contract B345708 515. The financial support from the DOE National Spent Nuclear Fuel Program and Office of Spent Fuel Management (EM-67), the Materials Research Institute at Lawrence Livermore National Laboratory, and Sigma Xi is greatly appreciated.

References

  1. 1.
    R.C. Ecob, A.T. Donaldson, J. Nucl. Mater. 132, 110–125 (1985)CrossRefGoogle Scholar
  2. 2.
    V. Fidleris, J. Nucl. Mater. 26, 51 (1968)CrossRefGoogle Scholar
  3. 3.
    V. Fidleris, C.D. Williams, Electrochem. Tech. 4, 258 (1966)Google Scholar
  4. 4.
    A.J. Ardell, O.D. Sherby, Trans. Metall. Soc. AIME 239, 1547 (1967)Google Scholar
  5. 5.
    E.R. Gilbert, S.A. Duran, A.L. Bement, Applications-Related Phenomena for Zirconium and Its Alloys, ASTM STP 458 (American Society for Testing and Materials, Philadelphia, 1968), p. 210Google Scholar
  6. 6.
    S.R. MacEwen, R.G. Fleck, E.T.C. Ho, O.T. Woo, Metall. Trans. A 12A, 1751–1759 (1981)CrossRefGoogle Scholar
  7. 7.
    M. Pahutova, J. Cadek, Mater. Sci. Eng. 11, 151–162 (1973)CrossRefGoogle Scholar
  8. 8.
    I.M. Bernstein, Trans. Metall. Soc. AIME 239, 1518 (1967)Google Scholar
  9. 9.
    B. Ramaswami, G.B. Craig, Trans. Metall. Soc. AIME 239, 1226 (1967)Google Scholar
  10. 10.
    N. Prasad, G. Malakondaiah, P. Rama Rao, Trans. Indian Inst. Met. 42 (supplement), S165 (1989)Google Scholar
  11. 11.
    H. Siethoff, K. Ahlborn, Scr. Metall. 21, 1439–1444 (1987)CrossRefGoogle Scholar
  12. 12.
    T.A. Hayes, M.E. Kassner, R.S. Rosen, Metall. Mater. Trans. 33A, 337–343 (2002)CrossRefGoogle Scholar
  13. 13.
    T.A. Hayes, M.E. Kassner, Metall. Mater. Trans. A 37A, 2389 (2006)CrossRefGoogle Scholar
  14. 14.
    M.E. Kassner, M.-T. Perez-Prado, Prog. Mater. Sci. 45, 1 (2000)CrossRefGoogle Scholar
  15. 15.
    G.A. Henshall, M.E. Kassner, H.J. McQueen, Metall. Mater. Trans. A23, 881 (1992)Google Scholar
  16. 16.
    M.T. Perez-Prado, S.R. Barrabes, M.E. Kassner, E. Evangelista, Acta Mater. 53, 581 (2005)CrossRefGoogle Scholar
  17. 17.
    G.M. Hood, Defect Diff. Forum 95–98, 755 (1993)CrossRefGoogle Scholar
  18. 18.
    M. Lubbehusen, K. Vieregge, G.M. Hood, H. Mehrer, Chr. Herzig, J. Nucl. Mater. 182, 164 (1991)Google Scholar
  19. 19.
    W. Frank, Defect Diff. Forum 66–69, 387 (1989)Google Scholar
  20. 20.
    E. Forlerer de Svarch, C. Rodriguez, J. Nucl. Mater. 185, 167 (1991)CrossRefGoogle Scholar
  21. 21.
    J.J. Holmes, J. Nucl. Mater. 13, 137 (1964)CrossRefGoogle Scholar
  22. 22.
    B. Kombaiah, K.L. Murty, Phil. Mag. 95, 1656 (2015)CrossRefGoogle Scholar
  23. 23.
    A.R. Massih, Uppsala, Sweden: Quantum Technologies AB (2014) (Rep. 2014:20)Google Scholar
  24. 24.
    B.M. Morrow, R.W. Kozar, K.R. Anderson, M.J. Mills, Acta Mater. 61, 4452 (2013)CrossRefGoogle Scholar
  25. 25.
    J.H. Moon, P.E. Cantonwine, K.R. Anderson, S. Karthikeyan, M.J. Mills, J. Nucl. Mater. 353, 177 (2006)CrossRefGoogle Scholar
  26. 26.
    H.G. Kim, B.K. Choi, Y.H. Jeong, Nucl. Eng. Des. 238, 3331 (2008)CrossRefGoogle Scholar
  27. 27.
    B. Kombaiah, K.L. Murty, Mater. Sci. Eng. A 623, 114 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Horvath, F. Dyment, H. Mehrer, J. Nucl. Mater. 126, 206 (1984)CrossRefGoogle Scholar
  29. 29.
    F. Dyment, C.M. Libanati, J. Mater. Sci. 3, 349 (1968)CrossRefGoogle Scholar
  30. 30.
    G.B. Fedorov, F.I. Zhomov, Metall. Metall. Metall. 1, 161 (1959)Google Scholar
  31. 31.
    E.V. Borisov, Yu.G. Godin, P.L. Gruzin, A.J. Evstyukhin, V.S. Emel’yanov, Metall. Metallogr., 291 (1957) (Pub. 1958)Google Scholar
  32. 32.
    V.S. Lyashenko, V.N. Bykov, L.V. Pavlinov, Phys. Metall. Metallogr. 8, 40 (1959)Google Scholar
  33. 33.
    P. Flubacher, Selbst-Diffusionsversuche in α-Zirkon. EIR-Bericht Nr. 49 (1963)Google Scholar
  34. 34.
    R.B. Jones, J. Nucl. Mater. 19, 204 (1966)CrossRefGoogle Scholar
  35. 35.
    D.S. Wood, B. Watkins, J. Nucl. Mater. 41, 327 (1971)CrossRefGoogle Scholar
  36. 36.
    K.M. Rose, E.D. Hindle, Zirconium in the Nuclear Industry, ASTM STP 633 (American Society for Testing and Materials, Philadelphia, 1977), p. 24Google Scholar
  37. 37.
    P.A. Ross-Ross, C.E.L. Hunt, J. Nucl. Mater. 26, 2 (1968)CrossRefGoogle Scholar
  38. 38.
    B.D. Clay, G.B. Redding, Creep Rupture Properties of Alpha-Phase Zircaloy Cladding Relevant to the Loss-of-Coolant Accident (CEGB Report RD/B/N 3187, 1975)Google Scholar
  39. 39.
    B.D. Clay, G.B. Redding, J. Br. Nucl. Energy Soc. 15, 253 (1976)Google Scholar
  40. 40.
    N. Prasad, G. Malakondaiah, P. Rama Rao, Scr. Metall. 26, 541–543 (1992)Google Scholar
  41. 41.
    N. Prasad, G. Malakondaiah, K. Muraleedharan, P. Rama Rao, J. Nucl. Mater. 158, 30–41 (1988)Google Scholar
  42. 42.
    C.E. Coleman, J. Nucl. Mater. 42, 180 (1972)CrossRefGoogle Scholar
  43. 43.
    B. Burton, A.T. Donaldson, G.L Reynolds, Zirconium in the Nuclear Industry, ASTM STP 681 (American Society for Testing and Materials, Philadelphia, 1979), p. 561Google Scholar
  44. 44.
    G.E. Lucas, R.M.N. Pelloux, Nucl. Tech. 53, 46 (1981)CrossRefGoogle Scholar
  45. 45.
    G.E. Lucas, R.M.N. Pelloux, Metall. Trans. A 12A, 1321 (1981)CrossRefGoogle Scholar
  46. 46.
    G.E. Lucas, M. Surprenant, J. DiMarzo, G.J. Brown, J. Nucl. Mater. 101, 78 (1981)CrossRefGoogle Scholar
  47. 47.
    P.J. Pankaskie, Creep Properties of Zircaloy-2 for Design Application, HW-SA-2803 (Hanford Atomic Products Operation, 1962)Google Scholar
  48. 48.
    L.G. Bell, Can. Metall. Q. 2, 119 (1963)CrossRefGoogle Scholar
  49. 49.
    F. Tinti, Nucl. Tech. 60, 104 (1983)CrossRefGoogle Scholar
  50. 50.
    E.R. Gilbert, B. Mastel, ANS Trans. 12, 132 (1969)Google Scholar
  51. 51.
    Y. Matsuo, J. Nucl. Sci. Tech. 24(2), 111 (1987)Google Scholar
  52. 52.
    F. Povolo, A.J. Marzocca, J. Nucl. Mater. 97, 323 (1981)CrossRefGoogle Scholar
  53. 53.
    A.T. Donaldson, R.C. Ecob, Scr. Metall. 19, 1313 (1985)CrossRefGoogle Scholar
  54. 54.
    C.C. Busby, K.B. Marsh, High Temperature Time-Dependent Deformation in Internally Pressurized Zircaloy-4 Tubing (LBWR Development Program) (Westinghouse Electric Corporation, Bettis Atomic Power Laboratory Report, WAPD-TM-1043, 1974)Google Scholar
  55. 55.
    C.C. Busby, L.S. White, Some High Temperature Mechanical Properties of Internally Pressurized Zircaloy-4 Tubing (Westinghouse Electric Corporation, Bettis Atomic Power Laboratory Report, WAPD-TM-1243, 1976)Google Scholar
  56. 56.
    A.M. Garde, H.M. Chung, T.F. Kassner, Acta Metall. 26, 153 (1978)CrossRefGoogle Scholar
  57. 57.
    A.M. Garde, J. Nucl. Mater. 80, 195 (1979)CrossRefGoogle Scholar
  58. 58.
    H.M. Chung, A.M. Garde, T.F. Kassner, Mechanical Properties of Zircaloy Containing Oxygen (Argonne National Laboratory Report, ANL-76-121, 1978)Google Scholar
  59. 59.
    G. Brun, J. Pelchat, J.C. Floze, M. Galimberti, Zirconium in the Nuclear Industry, ASTM STP 939 (American Society for Testing and Materials, Philadelphia, 1987), p. 597Google Scholar
  60. 60.
    M. Mayuzumi, T. Onchi, J. Nucl. Mater. 175, 135 (1990)CrossRefGoogle Scholar
  61. 61.
    M. Mayuzumi, T. Onchi, J. Nucl. Mater. 171, 381 (1990)CrossRefGoogle Scholar
  62. 62.
    K.L. Murty, JOM 51, 32 (1999)CrossRefGoogle Scholar
  63. 63.
    K.L. Murty, B.V. Tanikella, J.C. Earthman, Acta Metall. Mater. 42, 3653 (1994)CrossRefGoogle Scholar
  64. 64.
    K.L. Murty, Trans. Indian Inst. Met. 53, 107 (2000)Google Scholar
  65. 65.
    Y.-S. Kim, J. Nucl. Mater. 250, 164 (1997)CrossRefGoogle Scholar
  66. 66.
    J.H. Choe, J.H. Hong, J. Korean Inst. Met. 22, 613 (1984)Google Scholar
  67. 67.
    Y.-K. Park, T.-S. Kim, J.-H. Choi, M.-Y. Wee, J. Korean Inst. Met. Mater. 38, 624 (2000)Google Scholar
  68. 68.
    H.E. Rosinger, P.C. Bera, W.R. Clendening, The Steady State Creep of Zircaloy-4 Fuel Cladding from 940 to 1873 K (Atomic Energy of Canada Limited, AECL-6193, 1978)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Exponent Failure Analysis AssociatesMenlo ParkUSA
  2. 2.Aerospace and Mechanical Engineering DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations