Fracture Behavior and Grain Boundary Sliding During High-Temperature Low-Stress Deformation of AZ31 Magnesium Alloy

  • Peiman Shahbeigi RoodposhtiEmail author
  • Korukonda L. Murty
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Low-stress high-temperature tensile-creep behavior of AZ31 Mg alloy was investigated to characterize microstructure evolution, uncover dominant creep mechanism and find a correlation with common creep models. The stress exponent, inverse grain size exponent and activation energy value were evaluated. Cavity nucleation from stress concentration sites, types of fracture surfaces and microstructural evidence of grain migrations were observed in crept samples that are indicative of Rachinger mechanism of grain boundary sliding (GBS). Experimental data reveal a reasonable correlation with Langdon’s model. Further analysis on fracture behavior of this alloy in a wider range of stresses show that they follow Monkman-Grant model in predicting the fracture time.


AZ31 Creep GBS Fracture analysis Monkman-Grant 



This research is supported by the National Science Foundation, Grant 0968825.


  1. 1.
    N. Farahbakhsh, P. ShahbeigiRoodposhti, A.S. Ayoub, R.A. Venditti, J.S. Jur, Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. 132, 41857 (2014)Google Scholar
  2. 2.
    N. Farahbakhsh, R.A. Venditti, J.S. Jur, Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts. Cellulose 21, 2743–2755 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, R.O. Scattergood, Dislocation density evolution during creep of AZ31 Mg alloy: a study by X-ray diffraction line profile analysis, Metallogr. Microstruct. Anal. 4, 337–343 (2015)Google Scholar
  4. 4.
    P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, R. Scattergood, Effects of microstructure and processing methods on creep behavior of AZ91 magnesium alloy. J. Mater. Eng. Perform. 25, 3697–3709 (2016)CrossRefGoogle Scholar
  5. 5.
    S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Creep deformation mechanisms in coarse-grained solid solution Mg alloys. Mater. Trans. 45, 1266–1271 (2004)CrossRefGoogle Scholar
  6. 6.
    W. Kim, S. Chung, C. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures. Acta Mater. 49, 3337–3345 (2001)CrossRefGoogle Scholar
  7. 7.
    P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Fracture behavior of AZ31 magnesium alloy during low stress high temperature deformation, Metall. Microstruct. Anal. 4, 91–101 (2015)Google Scholar
  8. 8.
    P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45, 698–708 (2013)CrossRefGoogle Scholar
  10. 10.
    R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43, 7366–7371 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528, 6919–6926 (2011)CrossRefGoogle Scholar
  12. 12.
    J.A. Valle, M.T. Pérez-Prado, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36, 1427–1438 (2005)CrossRefGoogle Scholar
  13. 13.
    H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Creep deformation mechanisms and related microstructure development of AZ31 magnesium alloy, in Magnesium Technology 2015, ed. By M.V. Manuel, A. Singh, M. Alderman, N.R. Neelameggham (TMS, 2015), pp. 29–34Google Scholar
  15. 15.
    W.A. Rachinger, Relative grain translations in the plastic flow of aluminium.pdf. J. Inst. Met. D 81, 33–41 (1952)Google Scholar
  16. 16.
    I.M. Lifshitz, On the theory of diffusion-viscous flow of polycrystalline bodies. Sov. Phys. JETP 17, 909–920 (1963)Google Scholar
  17. 17.
    W.R. Cannon, The contribution of grain boundary sliding to axial strain during diffusion creep. Philos. Mag. 25, 1489–1497 (1972)CrossRefGoogle Scholar
  18. 18.
    T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. 42, 2437–2443 (1994)CrossRefGoogle Scholar
  19. 19.
    J.M. Alegre, I.I. Cuesta, M. Lorenzo, An extension of the Monkman-Grant model for the prediction of the creep rupture time using small punch tests. Exp. Mech. 54, 1441–1451 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Larson, J. Miller, Time-temperature relationship for rupture and creep stresses. Trans. ASME 74, 765–775 (1952)Google Scholar
  21. 21.
    R. Orr, O. Sherby, J. Dorn, Correlations of rupture data for metals at elevated temperatures. Transit. ASM 46, 113–118 (1954)Google Scholar
  22. 22.
    S. Manson, A. Haferd, A linear time-temperature relation for extrapolation of creep and stress rupture data, NACATN, 2890 (1953)Google Scholar
  23. 23.
    B. Wilshire, New high-precision creep procedures for accurate life extension of plant. Int. J. Press. Vessel Pip. 39, 73–82 (1989)CrossRefGoogle Scholar
  24. 24.
    F.C. Monkman, N.J. Grant, An empirical relationship between rupture life and minimum creep rate in creep rupture tests. Proc. ASTM 56, 593 (1956)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Peiman Shahbeigi Roodposhti
    • 1
    • 2
    Email author
  • Korukonda L. Murty
    • 2
  1. 1.University of ConnecticutStorrsUSA
  2. 2.North Carolina State UniversityRaleighUSA

Personalised recommendations