Anisotropic Biaxial Creep of Textured Nb-Modified Zircaloy-4 Tubing

  • Nilesh KumarEmail author
  • Kaitlin Grundy
  • Boopathy Kombaiah
  • Baifeng Luan
  • Korukonda Murty
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Biaxial creep of Nb-modified Zircaloy-4 (HANA-4) tubing is investigated at varied ratios of hoop and axial stresses at a constant temperature of 500 °C using internal pressurization superimposed with axial load while monitoring the hoop and axial strains using non-contact laser telemetric extensometer and linear variable differential transducer, respectively. Steady-state creep rates along the hoop and axial directions were evaluated in the power-law creep regime from which the creep locus was derived at a constant energy of dissipation. The resulting creep locus was compared with that predicted by the anisotropy parameters, R and P in the Hill’s formulation for generalized stress for anisotropic materials. Crystallographic texture of the tubing was characterized using electron backscatter diffraction technique. Research is supported by NSF grant #DMR0968825.


Biaxial creep Zirconium alloy Cladding material Anisotropy 



This research was supported by NSF grant #DMR0968825.


  1. 1.
    Climate Action & The United Nations Environment Programme (2015), Last accessed on 13 June 2016
  2. 2.
    Nuclear Energy Institute, Nuclear Energy Representation at the UN Climate Conference in Paris (2016), Last accessed on 13 June 2016
  3. 3.
    S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy. Acta. Mater. 61, 735–758 (2013)CrossRefGoogle Scholar
  4. 4.
    J.A.L. Robertson, Zirconium—an international nuclear material. J. Nucl. Mater. 100, 108–118 (1981)CrossRefGoogle Scholar
  5. 5.
    D.O. Northwood, The development and applications of zirconium alloys. Mater. Des. 6, 58–70 (1985)CrossRefGoogle Scholar
  6. 6.
    C.R.F. Azevedo, Selection of fuel cladding material for nuclear fission reactors. Eng. Fail. Anal. 18, 1943–1962 (2011)CrossRefGoogle Scholar
  7. 7.
    K.L. Murty, I. Charit, An Introduction to Nuclear Materials: Fundamentals and Applications (Wiley VCH, 2013)Google Scholar
  8. 8.
    P. Frankel, J. Wei, E. Francis, A. Forsey, N. Ni, S. Lozano-Perez, A. Ambard, M. Blat-Yrieix, R. Comstock, L. Hallstadius, Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors, in Zirconium in the Nuclear Industry, vol. 17, ASTM International, 2015Google Scholar
  9. 9.
    Y.H. Jeong, S. Park, M. Lee, B. Choi, J. Baek, J. Park, J. Kim, H. Kim, Out-of-pile and in-pile perfomance of advanded zirconium alloys (HANA) for high burn-up fuel. J. Nucl. Sci. Technol. 43, 977–983 (2006)CrossRefGoogle Scholar
  10. 10.
    I. Charit, K.L. Murty, Creep behavior of niobium-modified zirconium alloys. J. Nucl. Mater. 374, 354–363 (2008)CrossRefGoogle Scholar
  11. 11.
    M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Trans. A 12, 409–418 (1981)CrossRefGoogle Scholar
  12. 12.
    R.G. Ballinger, G.E. Lucas, R.M. Pelloux, The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2. J. Nucl. Mater. 126, 53–69 (1984)CrossRefGoogle Scholar
  13. 13.
    E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (ASTM International, 1988)Google Scholar
  14. 14.
    K.L. Murty, I. Charit, Texture development and anisotropic deformation of Zircaloys. Prog. Nucl. Energy 48, 325–359 (2006)CrossRefGoogle Scholar
  15. 15.
    B. Clay, The biaxial creep measurement of thin walled tubes. J. Mater. Sci. 9, 1275–1278 (1974)CrossRefGoogle Scholar
  16. 16.
    A. Donaldson, R. Horwood, T. Healey, Biaxial Creep Deformation of Zircaloy-4 in the High Alpha Phase Temperature Range (1983), pp. 103–118Google Scholar
  17. 17.
    K.L. Murty, B.L. Adams, Biaxial creep of textured zircaloy I: experimental and phenomenological descriptions. Mater. Sci. Eng. 70, 169–180 (1985)CrossRefGoogle Scholar
  18. 18.
    K. Murty, B. Tanikella, J. Earthman, Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized zircaloy-4. Acta. Metall. Mater. 42, 3653–3661 (1994)CrossRefGoogle Scholar
  19. 19.
    K. Murty, Zircaloy life prediction and new generation zircaloys for LWRs. Trans Indian Inst Met 50, 533–562 (1997)Google Scholar
  20. 20.
    V. Venkatesan, S.T. Mahmood, K.L. Murty, Biaxial creep testing of textured Ti-3Al-2.5 V tubing. Metall. Trans. A 21, 3001–3010 (1990)CrossRefGoogle Scholar
  21. 21.
    C. Grosjean, D. Poquillon, J. Salabura, J. Cloué, Experimental creep behaviour determination of cladding tube materials under multi-axial loadings. Mater. Sci. Eng. A 510, 332–336 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Mathew, S. Ravi, V. Vijayanand, S. Latha, A. Dasgupta, K. Laha, Biaxial creep deformation behavior of Fe–14Cr–15Ni–Ti modified austenitic stainless steel fuel cladding tube for sodium cooled fast reactor. Nucl. Eng. Des. 275, 17–22 (2014)CrossRefGoogle Scholar
  23. 23.
    B. Kombaiah, K.L. Murty, Coble, Orowan strengthening, and dislocation climb mechanisms in a Nb-modified Zircaloy cladding. Metall. Mater. Trans. A 46, 4646–4660 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, vol. 193 (1948), pp. 281–297Google Scholar
  25. 25.
    I. Charit, J. Yan, B. Marple, K. Murty, Effects of alloying and thermal treatment on creep anisotropy of zircaloys: application to in-reactor performance. Mater. Sci. Technol. AIST 1, 4 (2005)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Nilesh Kumar
    • 1
    Email author
  • Kaitlin Grundy
    • 1
    • 4
  • Boopathy Kombaiah
    • 2
  • Baifeng Luan
    • 3
  • Korukonda Murty
    • 1
  1. 1.Department of Nuclear EngineeringNC State UniversityRaleighUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.School of Materials Science and EngineeringChongqing UniversityChongqingChina
  4. 4.BWX TechnologiesLynchburgUSA

Personalised recommendations