High Temperature Tensile Properties and Related Microstructural Evolution in Grade 92 Steel

  • Sultan Alsagabi
  • Somayeh Pasebani
  • Indrajit CharitEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Ferritic-martensitic steels with good high temperature mechanical properties have many promising applications in fossil and nuclear power plants. In this work, a F92 steel was tensile tested from room to elevated temperatures (up to 700 °C). This material exhibited higher strength than traditional P92 steels. The reasons for the observed changes in mechanical properties were investigated by studying the microstructural characteristics in undeformed and deformed specimens using transmission electron microscopy. The microstructural evolution accelerated significantly under loading as temperature increased. For instance, the deformed microstructure at 600 °C showed early stages of M23C6 precipitate formation under loading. The M23C6 precipitates exhibited more coarsening tendency whereas the MX-type precipitates retained their size. As coarsening of M23C6 precipitates progressed at elevated temperatures, the strength gradually decreased as the solid solution strengthening deteriorated by removing W and Mo from the solid solution matrix.


Ferritic-martensitic steels Grade 92 steel 9Cr–2W steel Tensile testing TEM 



The work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517, as part of an ATR Nuclear Science User Facility (ATR-NSUF) experiment. Authors would also like to thank Joanna Taylor, Jatu Burns and Dr. Yaqiao Wu at the Center for Advanced Energy Studies (CAES) in Idaho Falls, ID for their help.


  1. 1.
    R. Klueh, A. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37–52 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Kellera, M.M. Margulies, Z. Hadjem-Hamouche, I. Guillot, Influence of the temperature on the tensile behaviour of a modified 9Cr–1Mo T91 martensitic steel. Mater. Sci. Eng., A 527, 6758–6764 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Hald, Microstructure and long-term creep properties of 9–12% Cr steels. Int. J. Press. Vessels Pip. 85, 30–37 (2008)CrossRefGoogle Scholar
  4. 4.
    H.K. Danielsen, J. Hald, A thermodynamic model of the Z-phase Cr (V, Nb) N. Calphad 31, 505–514 (2007)CrossRefGoogle Scholar
  5. 5.
    P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 45, 4901–4907 (1997)CrossRefGoogle Scholar
  6. 6.
    R.L. Klueh, D.R. Harries, High chromium ferritic and martensitic steels for nuclear applications, 1st edn. (ASTM International, West Conshohocken, 2001)CrossRefGoogle Scholar
  7. 7.
    C. Topbasi, A. Motta, M. Kirk, In situ tem study on elastic interaction between a prismatic loop and a gliding dislocation. J. Nucl. Mater. 425, 48–53 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Mater. Sci. Eng., A A267, 19–25 (1999)CrossRefGoogle Scholar
  9. 9.
    R.L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50, 287–310 (2005)CrossRefGoogle Scholar
  10. 10.
    F. Masuyama, Creep rupture life and design factors for high-strength ferritic steels. Int. J. Press. Vessels Pip. 84, 53–61 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Kadoya, T. Goto, S. Date, T. Yamauchi, T. Saida, T. Sada, Assessment of remaining life of fossil power-plant parts by means of a miniature creep-rupture test. Trans. Iron Steel Inst. Japan 30, 854–861 (1990)CrossRefGoogle Scholar
  12. 12.
    K. Kimura, Y. Toda, H. Kushima, K. Sawada, Creep strength of high chromium steel with ferrite matrix. Int. J. Press. Vessels Pip. 87, 282–288 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Sawada, K. Kubo, F. Abe, Creep behavior and stability of MX precipitates at high temperature in 9Cr-0.5Mo-1.8W-VNb steel. Mater. Sci. Eng., A 319, 784–787 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, J. Konys, Creep-to-rupture of the steel P92 at 650 °C in oxygen-controlled stagnant lead in comparison to air. J. Nucl. Mater. 432, 78–86 (2013)CrossRefGoogle Scholar
  15. 15.
    F. Abe, Strengthening mechanisms in creep of advanced ferritic power plant steels based on creep deformation analysis, in Advanced Steels: The Recent Scenario in Steel Science and Technology, ed. by Y. Weng, D. Hand (Metallurgical Industry, Beijing, 2011), pp. 409–422CrossRefGoogle Scholar
  16. 16.
    F. Abe, S. Nakazawa, H. Araki, T. Noda, The role of microstructural instability on creep behavior of a martensitic 9Cr-2W steel. Metall. Mater. Trans. A 23, 469–477 (1992)CrossRefGoogle Scholar
  17. 17.
    L. Cipolla, H.K. Danilesen, D. Venditti, P.E. Di Nunzio, J. Hald, M.A.J. Somers, Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Mater. 58, 669–679 (2010)Google Scholar
  18. 18.
    R.L. Higginson, C.M. Sellars, Worked Examples in Quantitative Metallography, 1st edn. (Maney Publishing, London, 2003)Google Scholar
  19. 19.
    R.W.K. Honeycombe, H.K. Bhadeshia, Steels: Microstructure and Properties, 2nd edn. (Edward Arnold, London, 1995)Google Scholar
  20. 20.
    N. Ridley, S. Maropoulos, J.D.H. Paul, Effects of heat treatment on microstructure and mechanical properties of Cr–Mo–3·5Ni–V steel. Mater. Sci. Technol. 10, 239–249 (1994)CrossRefGoogle Scholar
  21. 21.
    F. Abe, Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel. Metall. Mater. Trans. A 34, 913–925 (2003)CrossRefGoogle Scholar
  22. 22.
    K. Maruyama, K. Sawada, J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel. Trans. Iron Steel Inst. Japan 41, 641–653 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th edn. (Van Nostrand, New Jersey, 2008)Google Scholar
  24. 24.
    F. Abe, Creep rates and strengthening mechanisms in tungsten strengthened 9Cr steels. Mater. Sci. Eng., A 319–321, 770–773 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Butt, P. Feltham, Solid-solution hardening. J. Mater. Sci. 28, 2557–2576 (1993)CrossRefGoogle Scholar
  26. 26.
    C. Lacy, M. Gensamer, The tensile properties of alloyed ferrites. Trans. Am. Soc. Metals 32, 88–110 (1944)Google Scholar
  27. 27.
    M. Taneike, F. Abe, K. Sawada, Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature 424, 294–296 (2003)CrossRefGoogle Scholar
  28. 28.
    R.C. Thomson, H.K.D.H. Bhadeshia, Carbide compositions in 12Cr1MoV power plant steel. Metall. Mater. Trans. A 23, 1171–1179 (1992)CrossRefGoogle Scholar
  29. 29.
    J. Wang, W. Yuan, R.S. Mishra, I. Charit, Microstructure and mechanical properties of friction stir welded oxide dispersion strengthened alloy. J. Nucl. Mater. 432, 274–280 (2013)CrossRefGoogle Scholar
  30. 30.
    L.M. Brown, R.K. Ham, Dislocation-particle interactions, in Strengthening Methods in Crystals, ed. by A. Kelly, R.B. Nicholson (Elsevier, Amsterdam, 1971), pp. 9–135Google Scholar
  31. 31.
    E. Nembach, Particle Strengthening of Metals and Alloys, 1st edn. (Wiley, New York, 1996)Google Scholar
  32. 32.
    H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, 1st edn. (Pergamon Press, New York, 1982)Google Scholar
  33. 33.
    T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, Creep Rupture Behavior of Grade 91 Steel. Mater. Sci. Eng., A 565, 382–391 (2013)CrossRefGoogle Scholar
  34. 34.
    J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Phil. Mag. 5, 485–497 (1960)CrossRefGoogle Scholar
  35. 35.
    T. Endo, F. Masuyama, K.S. Park, Change in vickers hardness and substructure during creep of a mod. 9Cr-1Mo Steel. Mater. Trans. 2, 239–246 (2003)CrossRefGoogle Scholar
  36. 36.
    S. Takeuchi, A.S. Argon, Steady-state creep of single-phase crystalline matter at high temperature. J. Mater. Sci. 11, 1542–1566 (1976)CrossRefGoogle Scholar
  37. 37.
    V. Dudko, A. Belyakov, R. Kaibyshev, Effect of tempering on mechanical properties and microstructure of a 9% Cr heat resistant steel. Mater. Sci. Forum 706–709, 841–846 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Yan, W. Wang, Y.Y. Shan, K. Yang, Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels. Front. Mater. Sci. 7, 1–27 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Yamada, M. Yaguchi, T. Ogatab, Microstructural change of a 9Cr steel longitudinal welded tube under internal pressure creep loading. Mater. Sci. Eng., A 560, 450–457 (2013)CrossRefGoogle Scholar
  40. 40.
    A.J. Ardell, S.V. Prikhodko, Coarsening of Γ′ in Ni–Al alloys aged under uniaxial compression: II. Diffusion under stress and retardation of coarsening kinetics. Acta Mater. 51, 5013–5019 (2003)CrossRefGoogle Scholar
  41. 41.
    T. Nakajima, M. Takeda, T. Endo, Accelerated coarsening of precipitates in crept Al-Cu alloys. Mater. Sci. Eng., A 387–389, 670–673 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Hald, L. Korcakova, Precipitate stability in creep resistant ferritic steels-experimental investigations and modelling. Trans. Iron Steel Inst. Japan 43, 420–427 (2003)CrossRefGoogle Scholar
  43. 43.
    M. Hattestrand, M. Schwind, H.-O. Andren, Microanalysis of two creep resistant 9–12% chromium steels. Mater. Sci. Eng., A 250, 27–36 (1998)CrossRefGoogle Scholar
  44. 44.
    J. Hald, Metallurgy and creep properties of new 9-12% Cr steels. Steel Res. 12, 74–79 (2004)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Sultan Alsagabi
    • 1
    • 2
  • Somayeh Pasebani
    • 1
    • 3
  • Indrajit Charit
    • 1
    Email author
  1. 1.Chemical and Materials EngineeringUniversity of IdahoMoscowUSA
  2. 2.Atomic Energy Research InstituteKing Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
  3. 3.School of Mechanical, Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations