Effect of Mo and Bi Additions on the Microstructure of Zr–Cr–Fe Alloy After β-Quenching

  • Jianmin Wang
  • Baifeng LuanEmail author
  • Korukonda L. Murty
  • Qing LiuEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


This work investigated the solid-states phase transformation behavior of Zr–Cr–Fe alloys during rapid cooling from β-phase region. Scanning electron microscopy (SEM) was used to characterize the microstructure evolution of Zr–Cr–Fe alloys containing different Mo and Bi contents. The results show that two different phase transformation modes were involved during β to α transformation for different domains within prior β grains: (i) Martensitic transformation resulting in lath-shaped grains occured within prior β grain interiors. (ii) Massive transformation generating massive-shaped grains initiated along two adjacent prior β parent grain boundaries. Alpha (α) lath width reduced with increasing Mo concentration while Mo strongly retarded massive phase transformation. Interestingly microstructures exhibited no significant variation in the case of specimens containing different Bi contents irrespective of the phase transformation modes.


Martensitic transformation Massive transformation Zr–Cr–Fe alloy Mo and bi 



This study is financially supported by the programs of National Natural Science Foundation of China (51531005, 51421001, 51371202 and 51501021).


  1. 1.
    K.L. Murty, I. Charit, Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 48(4), 325–359 (2006)CrossRefGoogle Scholar
  2. 2.
    L.J. Chai et al., Effect of predeformation on microstructural evolution of a Zr alloy during 550-700°C aging after β quenching. Acta Mater. 61(8), 3099–3109 (2013)CrossRefGoogle Scholar
  3. 3.
    H.L. Yang et al., Effect of molybdenum on microstructures in Zr-1.2Nb alloys after β-quenching and subsequently 873 K annealing. Mater. Des. 104, 355–364 (2016)CrossRefGoogle Scholar
  4. 4.
    L.J. Chai et al., Experimental observation of 12 α variants inherited from one β grain in a Zr alloy. J. Nucl. Mater. 440(1–3), 377–381 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Akhtar, The allotropie transformation bcc ⇌ hcp in zirconium. Metall. Mater. Trans. A 7(11), 1735–1741 (1976)CrossRefGoogle Scholar
  6. 6.
    J. Romero et al., Texture memory and variant selection during phase transformation of a zirconium alloy. Acta Mater. 57(18), 5501–5511 (2009)CrossRefGoogle Scholar
  7. 7.
    W.M. Rumball, Massive and martensitic transformations in a Zr-1.25 wt.%Cr-0.1 wt.%Fe alloy. J. Less Common Met. 38(2–3), 233–237 (1974)CrossRefGoogle Scholar
  8. 8.
    A.R. Massih et al., Effect of quenching rate on the β-to-α phase transformation structure in zirconium alloy. J. Nucl. Mater. 322(2), 138–151 (2003)CrossRefGoogle Scholar
  9. 9.
    O.T. Woo, K. Tangri, Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys. J. Nucl. Mater. 79(79), 83–94 (1979)CrossRefGoogle Scholar
  10. 10.
    R.A. Holt, The beta to alpha phase transformation in zircaloy-4. J. Nucl. Mater. 35(3), 322–334 (1970)CrossRefGoogle Scholar
  11. 11.
    L.J. Chai et al., Effect of cooling rate on β → α transformation during quenching of a Zr-0.85Sn-0.4Nb-0.4Fe-0.1Cr-0.05Cu alloy. Sci. China Technol. Sci. 55(10), 2960–2964 (2012)CrossRefGoogle Scholar
  12. 12.
    H.S. Hong, S.J. Kim, K.S. Lee, Effect of oxygen content on the beta-quenched microstructure of modified Zircaloy-4. J. Nucl. Mater. 265(1–2), 108–111 (1999)CrossRefGoogle Scholar
  13. 13.
    D. Srivastava et al., Morphology and substructure of lath martensites in dilute Zr-Nb alloys. Mater. Sci. Eng. A 288(1), 101–110 (2000)CrossRefGoogle Scholar
  14. 14.
    Y.M. Oh et al., Effect of various alloying elements on the martensitic transformation in Zr-0.8 Sn alloy. J. Alloy. Compd. 307(1–2), 318–323 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Phillips, The alpha-beta transformation in brass. Trans. Am. Inst. Min. Metall. Petrol. Eng. 89, 194 (1930)Google Scholar
  16. 16.
    T.B. Massalski, The mode and morphology of massive transformations in Cu-Ga, Cu-Zn, Cu-Zn-Ga and Cu-Ga-Ge alloys. Acta Mater. 6, 243–253 (1958)CrossRefGoogle Scholar
  17. 17.
    M. Hillert, Critical limit for massive transformation. Metall. Mater. Trans. A 33(8), 2299–2308 (2002)CrossRefGoogle Scholar
  18. 18.
    Y. Liu et al., A mixture of massive and feathery microstructures of Ti48Al2Cr2Nb alloy by high undercooled solidification. Mater. Charact. 100(100), 104–107 (2015)CrossRefGoogle Scholar
  19. 19.
    W.C. Cheng, C.K. Lai, Observing massive phase transformation in a Fe-Mn-Al alloy. Scripta Mater. 55, 783–786 (2006)CrossRefGoogle Scholar
  20. 20.
    T. Ahmed, H.J. Rack, Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A 243, 206–211 (1998)CrossRefGoogle Scholar
  21. 21.
    A. Sankaran et al., Variant selection during nucleation and growth of γ-massive phase in TiAl-based intermetallic alloys. Acta Mater. 57, 1230–1242 (2009)CrossRefGoogle Scholar
  22. 22.
    Y.H. Jeong et al., Effect of beta heat treatment on microstructure and nodular corrosion of Zircaloy-4. J. Nucl. Sci. Technol. 30, 154–163 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Tewari et al., Microstructural evolution in zirconium based alloys. J. Nucl. Mater. 383(1), 153–171 (2008)CrossRefGoogle Scholar
  24. 24.
    J.M. Wang et al., “Experimental observation of massive transformation in a Zr-Cr-Fe alloy,” To be published, 2016Google Scholar
  25. 25.
    C. Toffolon et al., Experimental study and preliminary thermodynamic calculations of the pseudo-ternary Zr-Nb-Fe-(O, Sn) system, in Zirconium in the Nuclear Industry: Thirteenth International Symposium, 2002Google Scholar
  26. 26.
    D. Hu, A.J. Huang, X. Wu, On the massive phase transformation regime in TiAl alloys: the alloying effect on massive/lamellar competition. Intermetallics 15(3), 327–332 (2007)CrossRefGoogle Scholar
  27. 27.
    M.R. Plichta, J.C. Williams, H.I. Aaronson, On the existence of the β → αm transformation in the alloy systems Ti-Ag, Ti-Au, and Ti-Si. Metall. Trans. A 8(12), 1885–1892 (1977)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Department of Nuclear EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations