Advertisement

Irradiation Creep of Zr-Alloys

  • M. GriffithsEmail author
  • G. A. Bickel
  • R. DeAbreu
  • W. Li
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Irradiation creep of Zr-alloy nuclear reactor core components affects the reactor performance and also limits the reactor life in cases where those components cannot easily be replaced. For Zr-2.5Nb pressure tubing irradiation creep has been extensively studied for a range of temperatures, between 250 and 350 °C, and dose rates, between 1 × 1016 and 2 × 1018 n m−2 s−1 (E > 1 meV), using data from various materials test reactors and power reactors. These studies have shown that irradiation creep is controlled by a complex combination of slip and diffusional mass transport (often referred to as irradiation growth in the absence of stress). Irradiation creep is dependent on the crystallographic texture, the dislocation structure, and the grain structure; the importance of each being a function of irradiation temperature and displacement damage rate. Data will be presented, together with mechanistic modelling, to show what factors affect creep under different irradiation conditions.

Keywords

Stainless steel Thermal aging Mechanical testing Microstructure Finite element method 

Notes

Acknowledgements

The authors would like to thank Clinton Mayhew for generating the TKD image. Partial funding for this work was provided by the Candu Owners Group (COG).

References

  1. 1.
    P.T. Heald, M.V. Speight, Point defect behaviour in irradiated materials. Acta Metall. 23, 1389 (1975)CrossRefGoogle Scholar
  2. 2.
    F.A. Nichols, Radiation-enhanced Creep. ERDA R&D Report WAPD-T-2636, bettis Atomic Power Laboratory (1975)Google Scholar
  3. 3.
    R.A. Holt, In-reactor deformation of cold-worked Zr-2.5Nb pressure tubes. J. Nucl. Mater. 372, 182–214 (2008)CrossRefGoogle Scholar
  4. 4.
    C.H. Woo, Theory of irradiation deformation in non cubic metals effects of anisotropic diffusion. J. Nucl. Mater. 159, 237–256 (1988)CrossRefGoogle Scholar
  5. 5.
    C.H. Woo, in Effects of Anisotropic Diffusion on Irradiation Deformation, ed. by F.A. Garner, N.H. Packan, A.S. Kumar, Proceedings of the 13th International Symposium on Radiation-Induced Changes in Microstructure, ASTM STP 955, ASTM International, Philadelphia, PA, 1987, pp. 70–89Google Scholar
  6. 6.
    R.B. Adamson, F. Garzarolli, C. Patterson, In-reactor creep of zirconium alloys (ANT International, Molnlycke, Sweden, 2009)Google Scholar
  7. 7.
    K.L. Murty (ed.), Elsevier, Materials ageing and degradation in light water reactors: mechanisms and management—technology & engineering. Woodhead Publishing Series in Energy (2013). ISBN 0857097458 and 9780857097453Google Scholar
  8. 8.
    L. Walters, G.A. Bickel, M. Griffiths, The Effects of Microstructure and Operating Conditions on Irradiation Creep of Zr-2.5Nb Pressure Tubing, ed. by R.J. Comstock, P. Barbéris, Proceedings of the 17th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1543, ASTM International, West Conshohocken, PA, 2014, pp. 693–722Google Scholar
  9. 9.
    A.R. Causey, J.E. Elder, R.A. Holt, R.G. Fleck, On the Anisotropy of In-Reactor Creep of Zr-2.5Nb Tubes, ed. by A.M. Garde, E.R. Bradley, Proceedings of the 10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, ASTM International, Philadelphia, PA, 1994, pp. 202–219Google Scholar
  10. 10.
    A.R. Causey, R.A. Holt, N. Christodoulou, E.T.C. Ho, Irradiation-Enhanced Deformation of Zr-2.5Nb Tubes at High Neutron Fluences, ed. by G.P. Sabol, G.D. Moan, Proceedings of the 12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, ASTM International, West Conshohocken, PA, 2000, pp. 74–84Google Scholar
  11. 11.
    N. Christodoulou, A.R. Causey, R.A. Holt, C.N. Tome, N. Badie, R.J. Klassen, R. Sauve, C.H. Woo, Modelling In-Reactor Deformation of Zr-2.5Nb Pressure Tubes in CANDU Power Reactors, ed. by E.R. Bradley, G.P. Sabolm, Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295, ASTM, West Conshohocken, PA, 1996, pp. 518–537Google Scholar
  12. 12.
    R.F. DeAbreu, G.A. Bickel, A.W. Buyers, S.A. Donohue, K. Dunn, M. Griffiths, L. Walters, Temperature and Neutron Flux Dependence of In-Reactor Creep for Cold-worked Zr 2.5Nb, ed. by R.J. Comstock, A. Motta, Proceedings of the 18th International Symposium on Zirconium in the Nuclear Industry, ASTM International, West Conshohocken, PA, 2016Google Scholar
  13. 13.
    S. Yagnik, R. Adamson, G. Kobylyansky, J.H. Chen, D.r Gilbon, S. Ishimoto, T. Fukuda, L. Hallstadius, A. Obukhov, S. Mahmood, Effect of Alloying Elements, Cold Work, and Hydrogen on the Irradiation-Induced Growth Behavior of Zirconium Alloy Variants, ed. by R.J. Comstock, A. Motta, Proceedings of the 18th International Symposium on Zirconium in the Nuclear Industry, ASTM International, West Conshohocken, PA, 2016Google Scholar
  14. 14.
    K.L. Murty (ed.), Elsevier, Materials ageing and degradation in light water reactors: mechanisms and management—technology & engineering. Woodhead Publishing Series in Energy (2013). ISBN 0857097458 and 9780857097453Google Scholar
  15. 15.
    M. Griffiths, W.G. Davies, G.D. Moan, A.R. Causey, R.A. Holt, S.A. Aldridge, Variability of In-reactor Diametral Deformation for zr-2.5Nb Pressure Tubing. 13th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1423, American Society for Testing and Materials, pp. 796–810Google Scholar
  16. 16.
    G.A. Bickel, M. Griffiths, Manufacturing variability, microstructure and deformation of Zr-2.5Nb pressure tubes. J. ASTM Int. 4(10) (2007) (Paper ID JAI101126)Google Scholar
  17. 17.
    G.A. Bickel, M. Griffiths, Manufacturing variability and deformation for Zr-2.5Nb pressure tubes. J. Nucl. Mater. 383(1–2), 9–13 (2008)CrossRefGoogle Scholar
  18. 18.
    D.K. Rodgers, C.E. Coleman, M. Griffiths, G.A. Bickel, J.R. Theaker, I. Muir, A.A. Bahurmuz, S.St Lawrence, M. Resta Levi, In-reactor performance of pressure tubes in CANDU reactors. J. Nucl. Mater. 383(1–2), 22–27 (2008)CrossRefGoogle Scholar
  19. 19.
    G.A. Bickel, M. Griffiths, A. Douchant, S. Douglas, O.T. Woo, A. Buyers, Development of Zr 2.5Nb Pressure Tubes for Advanced CANDU Reactor. Sixteenth International Symposium on Zirconium in the Nuclear Industry, Chengdu, China, June 2010Google Scholar
  20. 20.
    D.K. Rodgers, M. Griffiths, G.A. Bickel, A. Buyers, C.E. Coleman, H. Nordin, S. St. Lawrence,In-reactor performance of pressure tubes in CANDU reactors. AECL Nucl. Rev. 5(1) (2016). doi:http://dx.doi.org/10.12943/CNR.2016.00007
  21. 21.
    M.I. Jyrkhama, G.A. Bickel, M.D. Pandey, Statistical analysis and modelling of in-reactor diametral creep of Zr-2.5Nb pressure tubes. Nucl. Eng. Des. 300, 241–248 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Griffiths, R.A. Holt, A. Rogerson, Microstructural aspects of accelerated deformation of zirconium alloy nuclear reactor components. J. Nucl. Mater. 225, 245 (1995) (Proc. 16th Int. Symp. on the Effects of Irradiation on Materials (1995))Google Scholar
  23. 23.
    G.M. Hood, The Vacancy Properties of Al and alpha-Zr, ed. by S. Saimot, G.R. Purdy, G.V. Kidson, Proceedings of the International Seminar on Solute-Defect Interaction, Theory and Experiment, Pergamon Press, Toronto, 1986, pp. 83–90Google Scholar
  24. 24.
    G.M. Hood, Point Defect Diffusion in alpha-Zr, ed. by C.H. Woo, R.J. McElroy, Proceedings of the International Conference on Fundamental Mechanisms of Radiation-Induced Creep and Growth (Elsevier Science Publishers B.V., North-Holland–Amsterdam, 1988), pp. 149–175Google Scholar
  25. 25.
    G.M. Hood, Point Defect properties of α-Zr and their Influence on Irradiation Behaviour of Zr-alloys, AECL-5692 (1977)Google Scholar
  26. 26.
    M. Griffiths, J.F. Mecke and J.E. Winegar, Evolution of Microstructure in Zirconium Alloys during Irradiation. Proceedings of 11th International Symposium on Zr in the Nuclear Industry, Garmisch, Germany, Sept. 1995, ASTM STP 1295 (1996), p. 580Google Scholar
  27. 27.
    C.H. Woo, U. Gosele, Dislocation bias in an anisotropic diffusive medium and irradiation growth. J. Nucl. Mater. 119, 219–228 (1983)CrossRefGoogle Scholar
  28. 28.
    P.H. Dederichs, K. Schroeder, Anisotropic diffusion in stress fields. Phys. Rev. B 17, 2524–2536 (1978)CrossRefGoogle Scholar
  29. 29.
    C.H. Woo, Irradiation creep due to elastodiffusion. J. Nucl. Mater. 120, 55–64 (1984)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • M. Griffiths
    • 1
    Email author
  • G. A. Bickel
    • 1
  • R. DeAbreu
    • 1
  • W. Li
    • 1
  1. 1.Canadian Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations