Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

This study provides a reasonable evaluation of the Mg-B binary system. Magnesium and Boron (Mg-B) alloys were investigated to determine their thermodynamic properties employing solid state electrochemical cells based on CaF2 electrolyte represented as \( (-) {\text{Pt}},{\text{Ar}}/\left\{ {{\text{Mg}} + {\text{CaMgF}}_{4} } \right\}\left\| {{\text{CaF}}_{2} } \right\|\{ [{\text{Mg}} - {\text{B}}]_{\text{alloy }} + {\text{CaMgF}}_{4} \} /{\text{Ar}},{\text{Pt}}(+) \) Investigations were performed over the temperature range of 773–873 K to measure the electromotive force (EMF), which was used to derive the partial Gibbs Free energies of the alloys in the composition range of XB = 0.07 to 0.95. The activities of Mg were also calculated from partial Gibbs Free energies. The activities of Mg in MgB2 , MgB4 , and MgB7 were expressed as a function of temperature respectively, ln aMg = 4.27–9.32 × 103/T, ln aMg = −7.54 + 6.67×103/T, and ln aMg = 4.93–19.57 × 103/T, where T is the temperature in K. From this expression, the activity of Mg for these intermediate phases can be extrapolated at a higher temperature to get the accurate phase boundaries for the Mg-B system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  Google Scholar 

  2. W.C. Johnson, Hydrides of boron and silicon (stock, alfred). J. Chem. Educ. 11(4), 256 (1934)

    Article  Google Scholar 

  3. Y. Markovskii, Y.D. Kondrashev, G.V. Kaputovskaya, O sostave i khimicheskikh svoistvakh boridov magniya. Zh. Obshch. Khim 25, 433–444 (1955)

    Google Scholar 

  4. R. Naslain, A. Guette, P. Hagenmuller, Crystal chemistry of some boron-rich phases. J. Less Common Met. 47, 1–16 (1976)

    Article  Google Scholar 

  5. T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, W.W. Scott, Binary Alloy Phase Diagrams (American Society for Metals Metals Park, Ohio, OH, USA, 1986)

    Google Scholar 

  6. K. Spear, Rare Earth-Boron Phase Equilibria. In Boron and Refractory Borides (Springer, Berlin, Germany, 1977), pp. 439–456

    Book  Google Scholar 

  7. Z.K. Liu, Y. Zhong, D. Schlom, X. Xi, Q. Li, Computational thermodynamic modeling of the Mg-B system. Calphad 25(2), 299–303 (2001)

    Article  Google Scholar 

  8. S. Kim, D. Stone, J.I. Cho, C.Y. Jeong, C.S. Kang, J.C. Bae, Phase stability determination of the Mg–B binary system using the CALPHAD method and ab initio calculations. J. Alloy. Compd. 470(1), 85–89 (2009)

    Article  Google Scholar 

  9. J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2), 273–312 (2002)

    Article  Google Scholar 

  10. S.L. Chen, S. Daniel, F. Zhang, Y. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W. Oates, The PANDAT software package and its applications. Calphad 26(2), 175–188 (2002)

    Article  Google Scholar 

  11. S. Bohnenstiehl, M. Susner, S. Dregia, M. Sumption, J. Donovan, E. Collings, Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram. Thermochim. Acta 576, 27–35 (2014)

    Article  Google Scholar 

  12. P.W. Gilles, Vapor pressure of the chemical elements. J. Am. Chem. Soc. 86(24), 5702–5703 (1964)

    Article  Google Scholar 

  13. L. Cook, R. Klein, W. Wong-Ng, Q. Huang, R. Ribeiro, P. Canfield, Thermodynamics of MgB2 by calorimetry and Knudsen thermogravimetry. IEEE Trans. Appl. Supercond. 15(2), 3227–3229 (2005)

    Article  Google Scholar 

  14. S. Brutti, A. Ciccioli, G. Balducci, G. Gigli, P. Manfrinetti, A. Palenzona, Vaporization thermodynamics of MgB2 and MgB4. Appl. Phys. Lett. 80(16), 2892–2894 (2002)

    Article  Google Scholar 

  15. P. Villars, K. Cenzual, R. Gladyshevskii, Handbook (Walter de Gruyter GmbH & Co KG, Berlin, Germany, 2015)

    Book  Google Scholar 

  16. S. Parida, R. Reddy, Thermodynamic properties of CaTiF5 (s). J. Chem. Thermodyn. 39(6), 888–892 (2007)

    Article  Google Scholar 

  17. R. Reddy, A. Yahya, L. Brewer, Thermodynamic properties of Ti–Al intermetallics. J. Alloy. Compd. 321(2), 223–227 (2001)

    Article  Google Scholar 

  18. P. George, S. Parida, R. Reddy, Thermodynamic studies on the system Nb-Al. Metall. Mater. Trans. B 38(1), 85–91 (2007)

    Article  Google Scholar 

  19. S. Kumar, R. Reddy, L. Brewer, Phase equilibria in Ti3Al-Nb alloys at 1000 °C. J. Phase Equilib. 15(3), 279–284 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support, Grant No. DMR-1310072, of the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Imam, M.A., Reddy, R.G. (2017). Thermodynamic Studies on the Mg-B System Using Solid State Electrochemical Cells. In: Wang, S., Free, M., Alam, S., Zhang, M., Taylor, P. (eds) Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51091-0_44

Download citation

Publish with us

Policies and ethics