Advertisement

Monitoring of Cueva Larga, Puerto Rico—A First Step to Decode Speleothem Climate Records

  • Rolf VietenEmail author
  • Sophie Warken
  • Amos Winter
  • Denis Scholz
  • Thomas Miller
  • Christoph Spötl
  • Andrea Schröder-Ritzrau
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

This study presents results of an ongoing cave monitoring program at Cueva Larga, Puerto Rico. The monitoring includes monthly analyses of stable isotope ratios of rain and drip water, and trace element ratios of drip water and cave air parameters. Drip sites are above growing speleothems offering the unique chance to calibrate geochemical variations in speleothems in order to reconstruct past climate conditions. Seasonal rainfall patterns above Cueva Larga show characteristic stable isotope values. The wet season is characterized by more negative δ18O and δD values and a maritime deuterium excess (+10‰). The dry season has more positive δ18O and δD values and elevated deuterium excess (>15%). The seasonal variations in the δ18O and δD values are smoothed by the soil and karst system which acts as a low-pass filter, indicating that climate proxies derived from speleothems growing in Cueva Larga may only show multiannual changes. The seepage water reservoir appears to be well-mixed. The transmission time of atmospheric signals into the drip water is site-specific ranging most likely from several months to years.

Notes

Acknowledgements

This research was supported by grant AGS 1003502 from the National Science Foundation. We are grateful to the International Association of Sedimentologists for a graduate student grant. S.W. and D.S. are thankful to the Deutsche Forschungsgemeinschaft (DFG) for funding (SCHO 1274/6-1). We gratefully acknowledge Stefan Terzer (IAEA, Vienna) for providing isotopic data and comments on the manuscript, and we thank Augusto Mangini for his support inside and outside the cave. We thank Sylvia Riechelmann and Adrian Immenhauser from the Ruhr University Bochum and Eric Harmsen from the University of Puerto Rico, Mayagüez for their technical support. We thank Felipe Rodriguez-Morales and his family for their support and Nestor Aponte and Phil Perillat from the Arecibo Observatory. We also thank the following people for their assistance in the field: Flora Sperberg, Michael A. Casciano Kotick, Juan Estrella Martínez, Sarymar Barreto Saavedra, Jose A. Santiago-Saez, and Adam Haydock.

References

  1. Aemisegger, F., S. Pfahl, H. Sodemann, I. Lehner, S.I. Seneviratne, and H. Wernli. 2014. Deuterium excess as a proxy for continental moisture recycling and plant transpiration. Atmospheric Chemistry and Physics 14: 4029–4054. doi: 10.5194/acp-14-4029-2014.CrossRefGoogle Scholar
  2. Asmerom, Y., V. Polyak, S. Burns, and J. Rassmussen. 2007. Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States. Geology 35: 1–4. doi: 10.1130/G22865A.1.CrossRefGoogle Scholar
  3. Baker, A.J., D.P. Mattey, and J.U.L. Baldini. 2014. Reconstructing modern stalagmite growth from cave monitoring, local meteorology, and experimental measurements of dripwater films. Earth and Planetary Science Letters 392: 239–249. doi: 10.1016/j.epsl.2014.02.036.CrossRefGoogle Scholar
  4. Baldini, J.U.L., F. McDermott, D.L. Hoffmann, D.A. Richards, and N. Clipson. 2008. Very high-frequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth and Planetary Science Letters 272: 118–129. doi: 10.1016/j.epsl.2008.04.031.CrossRefGoogle Scholar
  5. Banner, J.L., A. Guilfoyle, E.W. James, L.A. Stern, and M. Musgrove. 2007. Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A. Journal of Sedimentary Research 77: 615–622. doi: 10.2110/jsr.2007.065.CrossRefGoogle Scholar
  6. Bennett, S.P., V. Grubisic, and R.M. Rasmussen. 1998. Gravity waves, rainbands, and deep convection induced by trade wind flow over Puerto Rico. In 12th Conference on Numerical Weather Prediction, 98–102, American Meteorological Society, Phoenix, AZ.Google Scholar
  7. Boch, R., and C. Spötl. 2008. The origin of lamination in stalagmites from Katerloch Cave, Austria: Towards a seasonality proxy. Pages News 16: 21–22. doi: 10.1111/j.1365-3091.2010.01173.x.Google Scholar
  8. Bourges, F., P. Genthon, A. Mangin, and D. D’Hulst. 2006. Microclimates of l’Aven d’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). International Journal of Climatology 26: 1651–1670. doi: 10.1002/joc.1327.CrossRefGoogle Scholar
  9. Braconnot, P., S.P. Harrison, M. Kageyama, P.J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao. 2012. Evaluation of climate models using palaeoclimatic data. National Climate Changes 2: 417–424. doi: 10.1038/nclimate1456.CrossRefGoogle Scholar
  10. Buecher, R.H. 1999. Microclimate study of Kartchner Caverns, Arizona. Journal of Archaeological Science 61: 108–120.Google Scholar
  11. Chen, A.A., and M.S. Taylor. 2002. Investigating the link between early season Caribbean rainfall and the El Nino+ 1 year. International Journal of Climatology 22: 87–106. doi: 10.1002/joc.711.CrossRefGoogle Scholar
  12. Clark, I., and P. Fritz. 1997. Environmental isotopes in hydrogeology. New York: Lewis Publishers.Google Scholar
  13. Collister, C., and D. Mattey. 2008. Controls on water drop volume at speleothem drip sites: An experimental study. Journal of Hydrology 358: 259–267. doi: 10.1016/j.jhydrol.2008.06.008.CrossRefGoogle Scholar
  14. Cowan, B.D., M.C. Osborne, and J.L. Banner. 2013. Temporal variability of cave-air CO2 in Central Texas. Journal of Cave and Karst Studies 75: 38–50. doi: 10.4311/2011ES0246.CrossRefGoogle Scholar
  15. Craig, H. 1961. Isotopic variations in meteoric waters. Science 133: 1702–1703.CrossRefGoogle Scholar
  16. Cruz, F.W., S.J. Burns, I. Karmann, W.D. Sharp, M. Vuille, A.O. Cardoso, J.A. Ferrari, P.L. Silva Dias, and O. Viana. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434: 63–66. doi: 10.1038/nature03365.CrossRefGoogle Scholar
  17. Cruz, F.W., M. Vuille, S.J. Burns, X. Wang, H. Cheng, M. Werner, L.R. Edwards, I. Karmann, A.S. Auler, and H. Nguyen. 2009. Orbitally driven east–west antiphasing of South American precipitation. National Geoscience 2: 210–214. doi: 10.1038/ngeo444.CrossRefGoogle Scholar
  18. Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x.CrossRefGoogle Scholar
  19. Deininger, M., J. Fohlmeister, D. Scholz, and A. Mangini. 2012. Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems—A model approach. Geochimica Cosmochimica Acta 96: 57–79. doi: 10.1016/j.gca.2012.08.013.CrossRefGoogle Scholar
  20. Dreybrodt, W. 2012. Speleothem deposition, 769–777. In Encyclopedia of caves, 2nd Ed., ed. by W.B. White and D.C. Culver. Amsterdam: Elsevier Inc. doi: 10.1016/B978.
  21. Fairchild, I.J., and A. Baker. 2012. Speleothem science: From processes to past environments, 432. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  22. Fairchild, I.J., and P.C. Treble. 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28: 449–468. doi: 10.1016/j.quascirev.2008.11.007.CrossRefGoogle Scholar
  23. Fairchild, I.J., A. Borsato, A.F. Tooth, S. Frisia, C.J. Hawkesworth, Y. Huang, F. McDermott, and B. Spiro. 2000. Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology 166: 255–269. doi: 10.1016/S0009-2541(99)00216-8.CrossRefGoogle Scholar
  24. Fairchild, I.J., C.L. Smith, A. Baker, L. Fuller, C. Spötl, D. Mattey, and F. McDermott. 2006a. Modification and preservation of environmental signals in speleothems. Earth and Planetary Science Letters 75: 105–153. doi: 10.1016/j.earscirev.2005.08.003.Google Scholar
  25. Fairchild, I.J., G.W. Tuckwell, A. Baker, and A.F. Tooth. 2006b. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies. Journal of Hydrology 321: 213–231. doi: 10.1016/j.jhydrol.2005.08.002.CrossRefGoogle Scholar
  26. Fairchild, I.J., S. Frisia, A. Borsato, and A.F. Tooth. 2007. Speleothems, 200–245. In Geochemical sediments and landscapes, ed. by D.J. Nash and S.J. McLaren. Oxford: Blackwell.Google Scholar
  27. Frisia, S., Fairchild, I.J., Fohlmeister, J., Miorandi, R., Spötl, C., and Borsato, A. (2011). Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochimica et Cosmochimica Acta, 75(2): 380–400.Google Scholar
  28. Gabitov, R.I., and E.B. Watson. 2006. Partitioning of strontium between calcite and fluid. Geochemistry, Geophysics and Geosystems 7. doi: 10.1029/2005GC001216.
  29. Govender, Y., E. Cuevas, L.D.S. Sternberg, and M.R. Jury. 2013. Temporal variation in stable isotopic composition of rainfall and groundwater in a tropical dry forest in the northeastern Caribbean. Earth Interactions 17: 1–20. doi: 10.1175/2013EI000534.1.CrossRefGoogle Scholar
  30. IAEA. 2012. Technical procedures for GNIP stations. Vienna, Austria: International Atomic Energy Agency.Google Scholar
  31. IAEA/WMO. 2015. Global network of isotopes in precipitation. The GNIP Database. Available via https://nucleus.iaea.org/wiser.
  32. Intergovernmental Panel on Climate Change. 2014. Climate change 2013—The physical science basis. Cambridge: Cambridge University Press. doi: 10.1017/CBO9781107415324.CrossRefGoogle Scholar
  33. James, E.W., J.L. Banner, and B. Hardt. 2015. A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochemistry, Geophysics, and Geosystems. doi: 10.1002/2014GC005658.Google Scholar
  34. Jury, M.R., and S. Chiao. 2013. Leeside boundary layer confluence and afternoon thunderstorms over mayagüez, puerto rico. Journal of Applied Meteorology and Climatology 52: 439–454. doi: 10.1175/JAMC-D-11-087.1.CrossRefGoogle Scholar
  35. Kaufmann, G., and W. Dreybrodt. 2004. Stalagmite growth and palaeo-climate: An inverse approach. Earth and Planetary Science Letters 224: 529–545. doi: 10.1016/j.epsl.2004.05.020.CrossRefGoogle Scholar
  36. Lachniet, M.S. 2004. A 1500-year El Niño/Southern Oscillation and rainfall history for the Isthmus of Panama from speleothem calcite. Journal of Geophyscial Research 109: 1–8. doi: 10.1029/2004JD004694.Google Scholar
  37. Lachniet, M.S. 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28: 412–432. doi: 10.1016/j.quascirev.2008.10.021.CrossRefGoogle Scholar
  38. Lawrence, J.R., and S.D. Gedzelman. 1996. Low stable isotope ratios of tropical cyclone rains. Geophysical Research Letters 23: 527–530.CrossRefGoogle Scholar
  39. Lee, X., T.J. Griffis, J.M. Baker, K.A. Billmark, K. Kim, and L.R. Welp. 2009. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles 23. doi: 10.1029/2008GB003331.
  40. Magaña, V., J.A. Amador, and S. Medina. 1999. The midsummer drought over Mexico and Central America. Journal of Climatology 12: 1577–1588. doi: 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.CrossRefGoogle Scholar
  41. Meisner, P., S. Riechelmann, K. Jansen, D.K. Richter, and S. Voigt. 2010. CO2-Monitoring in drei Höhlen des Bergischen Landes-Aggertalhöhle, Kluterthöhle und Bismarckhöhle. Mitteilungen des Verbandes der deutschen Höhlen und Karstforscher 56: 45–51.Google Scholar
  42. Merlivat, L., and J. Jouzel. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research 84: 5029. doi: 10.1029/JC084iC08p05029.CrossRefGoogle Scholar
  43. Mickler, P.J., L.A. Stern, and J.L. Banner. 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118: 65–81. doi: 10.1130/B25698.1.CrossRefGoogle Scholar
  44. Miller, T.E. 2010. Stream Pirates of the Caribbean: Tanamá and Camuy Rivers in the Northern Karst of Puerto Rico. Espeleorevista Puerto Rico 8–13.Google Scholar
  45. Mischel, S.A., Scholz, D., and Spötl, C. (2015). δ 18O values of cave drip water: a promising proxy for the reconstruction of the North Atlantic Oscillation?. Climate Dynamics, 45(11-12): 3035-3050.Google Scholar
  46. Monroe, W.H. 1980. Some tropical landforms of Puerto Rico. U.S. Geological Survey Professional Paper 1159.Google Scholar
  47. Peng, T.-R., C.-H. Wang, C.-C. Huang, L.-Y. Fei, C.-T.A. Chen, and J.-L. Hwong. 2010. Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters 289: 357–366. doi: 10.1016/j.epsl.2009.11.024.CrossRefGoogle Scholar
  48. Price, R.M., P.K. Swart, and H.E. Willoughby. 2008. Seasonal and spatial variation in the stable isotopic composition (δ18O and δD) of precipitation in. FCE LTER 193–205.Google Scholar
  49. Riechelmann, D.F.C., A. Schröder-Ritzrau, D. Scholz, J. Fohlmeister, C. Spötl, D.K. Richter, and A. Mangini. 2011. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site. Journal of Hydrology 409: 682–695. doi: 10.1016/j.jhydrol.2011.08.068.CrossRefGoogle Scholar
  50. Riechelmann, D.F.C., M. Deininger, D. Scholz, S. Riechelmann, A. Schröder-Ritzrau, C. Spötl, D.K. Richter, A. Mangini, and A. Immenhauser. 2013. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data. Geochimica et Cosmochimica Acta 103: 232–244. doi: 10.1016/j.gca.2012.11.002.CrossRefGoogle Scholar
  51. Rozanski, K., L. Aragua’s, and R. Gonfiantini. 1993. Isotopic patterns in modern global precipitation. In Climate change in continental isotopic records, ed. by P.K. Swart, K.L. Lohmann, S. Savin, and K.L. McKenzie, 1–37. Washington DC: American Geophysical Union.Google Scholar
  52. Salati, E., A. Dall’Olio, E. Matsui, and J.R. Gat. 1979. Recycling of water in the Amazon Basin: An isotopic study. Water Resources Research 15: 1250–1258. doi: 10.1029/WR015i005p01250.
  53. Scholl, M.A., and S.F. Murphy. 2014. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico. Water Resources Research 50: 4305–4322. doi: 10.1002/2013WR014413.CrossRefGoogle Scholar
  54. Scholl, M.A., J.B. Shanley, J.P. Zegarra, and T.B. Coplen. 2009. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Water Resources Research 45: W12407. doi: 10.1029/2008WR007515.
  55. Spötl, C., and A. Mangini. 2002. Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3. Earth and Planetary Science Letters 203: 507–518. doi: 10.1016/S0012-821X(02)00837-3.CrossRefGoogle Scholar
  56. Spötl, C., I.J. Fairchild, and A.F. Tooth. 2005. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochimica et Cosmochimica Acta 69: 2451–2468. doi: 10.1016/j.gca.2004.12.009.CrossRefGoogle Scholar
  57. Stoll, H.M., W. Müller, and M. Prieto. 2012. I-STAL, a model for interpretation of Mg/Ca, Sr/Ca and Ba/Ca variations in speleothems and its forward and inverse application on seasonal to millennial scales. Geochemistry, Geophysics and Geosystems 13. doi: 10.1029/2012GC004183.
  58. Verheyden, S., E. Keppens, I.J. Fairchild, F. McDermott, and D. Weis. 2000. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: Implications for paleoclimate reconstructions. Chemical Geology 169: 131–144. doi: 10.1016/S0009-2541(00)00299-0.CrossRefGoogle Scholar
  59. Victoria, R.L., L.A. Martinelli, J. Mortatti, and J. Richey. 1991. Mechanisms of water recycling in the Amazon Basin: Isotopic insights. AMBIO-A Journal of Human Environment 20: 384–387.Google Scholar
  60. Vieten, R., A. Winter, A. Winterhalder, A. Schröder-Ritzrau, T.E. Miller. (2016). Seasonal temperature variations control cave ventilation processes in Cueva Larga, Puerto Rico. International Journal of Speleology 42(3): 259.Google Scholar
  61. Wang, Y.J., H. Cheng, R.L. Edwards, Z.S. An, J.Y. Wu, C.C. Shen, and J.A. Dorale. 2001. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294: 2345–2348. doi: 10.1126/science.1064618.CrossRefGoogle Scholar
  62. Weedon, G.P. 2003. Time-series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
  63. Winter, A., T. Miller, Y. Kushnir, A. Sinha, A. Timmermann, M.R. Jury, C. Gallup, H. Cheng, and R.L. Edwards. 2011. Evidence for 800 years of North Atlantic multi-decadal variability from a Puerto Rican speleothem. Earth and Planetary Science Letters 308: 23–28. doi: 10.1016/j.epsl.2011.05.028.CrossRefGoogle Scholar
  64. Winter, A., D. Zanchettin, T. Miller, Y. Kushnir, D. Black, G. Lohmann, A. Burnett, G.H. Haug, J. Estrella-Martínez, S.F.M. Breitenbach, L. Beaufort, A. Rubino, and H. Cheng. 2015. Persistent drying in the tropics linked to natural forcing. Nature Communications 6: 7627. doi: 10.1038/ncomms8627.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rolf Vieten
    • 1
    Email author
  • Sophie Warken
    • 2
    • 3
  • Amos Winter
    • 1
    • 4
  • Denis Scholz
    • 2
  • Thomas Miller
    • 5
  • Christoph Spötl
    • 6
  • Andrea Schröder-Ritzrau
    • 3
  1. 1.Department of Marine SciencesUniversity of Puerto Rico, MayagüezMayagüezUSA
  2. 2.Institut für GeowissenschaftenJohannes Gutenberg Universität MainzMainzGermany
  3. 3.Institut für UmweltphysikRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  4. 4.Department of Earth and Environmental SystemsIndiana State UniversityTerre HauteUSA
  5. 5.Department of GeologyUniversity of Puerto Rico, MayagüezMayagüezUSA
  6. 6.Institut für GeologieUniversität InnsbruckInnsbruckAustria

Personalised recommendations