Integrated Strategy to Guide Health-Related Microbial Quality Management at Alpine Karstic Drinking Water Resources

Conference paper
Part of the Advances in Karst Science book series (AKS)


Water resources from alpine and mountainous karst aquifers play an important role in the drinking water supply in many countries but require sustainable protection and management. Microbial fecal pollution is one of the most relevant contaminants in alpine karst aquifers. However, until recently, microbial fecal pollution could be detected only by traditional approaches based on individual grab sampling and time-demanding cultivation-based procedures in the laboratory. Limited information on the pollution dynamics, origin of pollution, and associated health risks of exposure is available. Due to the lack of knowledge, a joint effort between the disciplines of microbiology and hydrogeology was undertaken in the Northern Calcareous Alps in eastern Austria during the last decade. The aim was to open the “black box” of pollution microbiology by developing new techniques and strategies that will guide management of water resources and water quality in catchments of alpine karsts. These techniques and strategies will provide a sustainable framework that supports decision making at all required time scales to realise health-related water-quality targets and water safety plans according to the World Health Organization. This article provides an overview of the developed techniques and strategies. The suggested framework may also be of interest to managers of other water resources as the selected methods and strategies can be adapted to the various situations or requirements.



The work of this paper was supported by the FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22 and research projects P22309-B20 and P23900-B22 granted to AHF) and the project Microbiology of Alpine Karst Spring Aquifers (by Vienna Water, MA31). The compilation of the review was also supported by the GWRS-Vienna research project (Vienna Water, MA31) and the FP7 KBBE EU project (AQUAVALENS). This was a joint study effort of the ICC Water & Health (


  1. Derx, J., J. Schijven, R. Sommer, C.M. Zoufal-Hruza, I.H. van Driezum, G. Reischer, S. Ixenmaier, A. Kirschner, C. Frick, A.H. Farnleitner, and A.P. Blaschke. 2016. QMRAcatch: Human-associated faecal pollution and infection risk modeling for a river-floodplain environment. Journal of Environmental Quality 45 (4): 1205–1214.CrossRefGoogle Scholar
  2. Farnleitner A.H. 2014. New framework for microbial faecal pollution analysis supports water resource management at all time scales. In World Water Conference and Congress Exhibition of the International Water Association, Lisbon, Portugal, 2014.Google Scholar
  3. Farnleitner, A.H., L. Hocke, C. Beiwl, G.G. Kavka, T. Zechmeister, A.K.T. Kirschner, and L.R. Mach. 2001. Rapid enzymatic detection of Escherichia coli contamination in polluted river water. Letters in Applied Microbiology 33: 246–250.CrossRefGoogle Scholar
  4. Farnleitner, A.H., L. Hocke, C. Beiwl, G.G. Kavka, and R.L. Mach. 2002. Hydrolysis of 4-methylumbelliferyl-β-D-glucuronide in differing sample fractions of river waters and its implication for the detection of fecal pollution. Water Research 36: 975–981.CrossRefGoogle Scholar
  5. Farnleitner, A.H., I. Wilhartitz, G. Ryzinska, A.K.T. Kirschner, H. Stadler, M. Burtscher, R. Hornek, U. Szewzyk, G. Herndl, and R.L. Mach. 2005. Bacterial dynamics in spring water of two contrasting alpine karst aquifers indicate the occurrence of autochthounous microbial endokarst communities. Environmental Microbiology 7: 1248–1259.CrossRefGoogle Scholar
  6. Farnleitner, A.H., G. Ryzinska-Paier, G.H. Reischer, M.M. Burtscher, S. Knetsch, S. Rudnicki, T. Dirnböck, G. Kuschnig, R.L. Mach, and R. Sommer. 2010. Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock, and wild life faecal pollution in alpine mountainous water resources. Journal of Applied Microbiology 109: 1599–1608.Google Scholar
  7. Farnleitner A.H., G.H. Reischer, H. Stadler, D. Kollanur, R. Sommer, W. Zerobin, G. Blöschl, K.M. Barrella, J.A. Truesdale, E.A. Casarez, and G.D. Di Giovanni. 2011. Microbial source tracking: methods, applications and case studies. In Agricultural and Rural Watersheds, ed. C.Hagedorn, J. Haarwood, A. Blanch, 399–432. New York: Springer (Chapter 18).Google Scholar
  8. Grabherr, G., T. Dirnböck, St. Dullinger, and M. Gottfried. 1999. Vegetationskartierung Hochschwab-Aflenzer Staritzen.- unpubl. report. Institute of Plant Physiology, Vienna University.Google Scholar
  9. Grayson, R.B., and G. Blöschl. 2000. Summary of Pattern Comparison and Concluding Remarks. In Spatial patterns in Catchment Hydrology. Observations and Modelling, ed. R. Grayson, and G. Blöschl, 355–367. Cambridge, UK: Cambridge University Press (Chapter 14).Google Scholar
  10. Haas, C.N., J.B. Rose, and C.P. Gerba. 1999. Quantitative Microbial Risk Assessment, 449. New York: John Wiley & Sons.Google Scholar
  11. International Organisation for Standardisation. 2000. ISO 7899-2 Water quality—Detection and enumeration of intestinal enterococci—Part 2: Membrane filtration method. Geneva, Switzerland.Google Scholar
  12. International Organisation for Standardisation. 2001. ISO 16649-2 Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli—Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. Geneva, Switzerland.Google Scholar
  13. Ishii, S., and M.J. Sadowsky. 2008. Escherichia coli in the environment: Implications for water quality and human health. Microbes and Environments 23: 101–108.CrossRefGoogle Scholar
  14. Mandl, W., G. Bryda, O. Kreuss, M. Moser, and W. Pavlik. 2002. Erstellung moderner geologischer Karten als Grundlage für karsthydrogeologische Spezialuntersuchungen im Hochschwabgebiet: Teilprojekt Eisenerz—Schwabeltal; Meßnerin, Mitteralpe.—Geological Survey of Austria, 211 S, Vienna.Google Scholar
  15. Reischer, G.H., D.C. Kasper, R. Steinborn, R.L. Mach, and A.H. Farnleitner. 2006. Quantitative PCR method for sensitive detection of ruminant faecal pollution in freshwater and evaluation of this method in alpine karstic regions. Applied Environmental Microbiology 72: 5610–5614.CrossRefGoogle Scholar
  16. Reischer, G.H., D.C. Kasper, R. Steinborn, A.H. Farnleitner, and R.L. Mach. 2007. A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment. Leters in. Applied Microbiology 44: 351–356.CrossRefGoogle Scholar
  17. Reischer, G.H., J.M. Haider, R. Sommer, H. Stadler, K.M. Keiblinger, R. Hornek, R.L. Mach, W. Zerobin, and A.H. Farnleitner. 2008. Quantitative microbial fecal source tracking with sampling guided by hydrological catchment dynamics. Environmental Microbiology 10: 2598–2608.CrossRefGoogle Scholar
  18. Reischer, G.H., D. Kollanur, J. Vierheilig, C. Wehrspaun, R. Mach, H. Stadler, R. Sommer, and A.H. Farnleitner. 2011. A hypothesis-driven approach for the identification of fecal pollution sources in water resources. Environmental Science and Technology 45 (9): 4038–4045.CrossRefGoogle Scholar
  19. Reszler C., H. Stadler, J. Komma, and G. Blöschl. 2014. Mapping and modelling of spatial patterns of dominant processes in a karstic catchment. Geophysical Research Abstracts 16: EGU2014–11752.Google Scholar
  20. Ryzinska-Paier, G., T. Lendenfeld, K. Correa, P. Stadler, A.P. Blaschke, R.L. Mach, H. Stadler, A.K.T. Kirschner, and A.H. Farnleitner. 2014. A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Science and Technology 69: 1349–1358.CrossRefGoogle Scholar
  21. Schijven, J., J. Derx, A.M. De Roda Husman, A.P. Blaschke, and A.H. Farnleitner. 2015. QMRAcatch—Microbial quality simulation of water resources including infection risk assessment. Journal of Environmental Quality 44 (5): 1491–1502.CrossRefGoogle Scholar
  22. Stadler, H., P. Skritek, R. Sommer, R.L. Mach, W. Zerobin, and A.H. Farnleitner. 2008. Microbiological monitoring and automated event sampling at karst springs using LEO-satellites. Water Science and Technology 58 (4): 899–909.CrossRefGoogle Scholar
  23. Stadler, H., E. Klock, P. Skritek, R.L. Mach, and A.H. Farnleitner. 2010. The spectral absoption coefficient at 254 nm as a real-time early warning proxy for detecting fecal pollution events at alpine karst water resources. Water Science and Technology 62 (8): 1899–1906.CrossRefGoogle Scholar
  24. Stalder, G., R. Sommer, C. Walzer, R.L. Mach, C. Beiglböck, A.P. Blaschke, and A.H. Farnleitner. 2011a. Gefährdungs- und risikobasierende Konzepte zur Bewertung der mikrobiologischen Wasserqualität—Teil 1. Veterinary Medicine Austria 98: 9–24.Google Scholar
  25. Stalder, G., A.H. Farnleitner, R. Sommer, C. Beiglböck, and C. Walzer. 2011b. Gefährdungs- und risikobasierende Konzepte zur Bewertung der mikrobiologischen Wasserqualität—Teil 2 Veterinary Medicine Austria 98: 54–65.Google Scholar
  26. Stadler, P., G. Ryzinska-Paier, T. Lendenfeld, W. Vogl, A.P. Blaschke, P. Strauss, H. Stadler, M. Lackner, M. Zessner, and A.H. Farnleitner. 2016. Automated near-real time monitoring of enzymatic activities in water resources. In Automatisation Technologies for Microbioglocial Monitoring, ed. W. Grabow. New York: Springer Book Series. (in press).Google Scholar
  27. WHO. 2011. Guidelines for drinking-water quality, 4th ed, 541p. Geneva, Switzerland: World Health Organisation.Google Scholar
  28. Wilhartitz, I., A.K.T. Kirschner, H. Stadler, G. Herndl, M. Dietzel, C. Latal, R.L.M. Mach, and A.H. Farnleitner. 2009. Heterotrophic prokaryotic production in ultra-oligotrophic alpine karst aquifers and ecological implications. FEMS Microbial Ecology 68: 287–299.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Interuniversity Cooperation Centre for Water and Health, TU WienInstitute of Chemical, Environmental and Biological Engineering 166/5/4ViennaAustria
  2. 2.Research Unit Water Quality and HealthKarl Landsteiner University of Health SciencesKremsAustria
  3. 3.Research Group Environmental Microbiology and Molecular Diagnostics, Interuniversity Cooperation Centre for Water and HealthTU Wien, Institute of Chemical, Environmental and Biological Engineering, Research Area 166/5/4ViennaAustria
  4. 4.Unit Water Hygiene, Interuniversity Cooperation Centre for Water and HealthMedical University of Vienna, Institute for Hygiene and Applied ImmunologyViennaAustria
  5. 5.Vienna WaterViennaAustria
  6. 6.Department for Water Resources Management and Environmental AnalyticsJoanneum Research, Institute for Water, Energy and SustainabilityGrazAustria

Personalised recommendations